Advertisement

Numerical Precession in Variational Discretizations of the Kepler Problem

  • Mats VermeerenEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 267)

Abstract

Kepler’s first law states that the orbit of a point mass with negative energy in a classical gravitational potential is an ellipse with one of its foci at the gravitational center. In numerical simulations of this system one often observes a slight precession of the ellipse around the gravitational center. Using the Lagrangian structure of modified equations and a perturbative version of Noether’s theorem, we provide leading order estimates of this precession for the implicit MidPoint rule (MP) and the Störmer-Verlet method (SV). Based on those estimates we construct some new numerical integrators that perform significantly better than MP and SV on the Kepler problem.

Keywords

Variational integrators Modified equations Kepler problem Orbital precession 

MSC 2010:

65L12 65P10 70F05 70H33 

Notes

Acknowledgements

This research is supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”. The author would like to thank the organizers and participants of the Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series for making it an inspiring event.

References

  1. 1.
    Chartier, P., Hairer, E., Vilmart, G.: Numerical integrators based on modified differential equations. Math. Comput. 76(260), 1941–1953 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chin, S.A.: Symplectic integrators from composite operator factorizations. Phys. Lett. A 226(6), 344–348 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chin, S.A.: Physics of symplectic integrators: Perihelion advances and symplectic corrector algorithms. Phys. Rev. E 75(3), 036–701 (2007)Google Scholar
  4. 4.
    Chin, S.A., Kidwell, D.W.: Higher-order force gradient symplectic algorithms. Phys. Rev. E 62(6), 8746 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Curtis, L.J., Haar, R.R., Kummer, M.: An expectation value formulation of the perturbed Kepler problem. Am. J. Phys. 55(7), 627–631 (1987)CrossRefGoogle Scholar
  6. 6.
    Forest, E., Ruth, R.D.: Fourth order symplectic integration. Physica 43(LBL-27662), 105–117 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Goldstein, H.: Classical Mechanics. Addison-Wesley Pub, Co (1980)Google Scholar
  8. 8.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer (2006)Google Scholar
  9. 9.
    Lévy-Leblond, J.M.: Conservation laws for gauge-variant Lagrangians in classical mechanics. Am. J. Phys. 39(5), 502–506 (1971)CrossRefGoogle Scholar
  10. 10.
    Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Num. 2001(10), 357–514 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Morehead, J.: Visualizing the extra symmetry of the Kepler problem. Am. J. Phys. 73(3), 234–239 (2005)CrossRefGoogle Scholar
  12. 12.
    Noether, E.: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse, Invariante Variationsprobleme 1918, 235–257 (1918)Google Scholar
  13. 13.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, vol. 107. Springer Science & Business Media (2000)Google Scholar
  14. 14.
    Rogers, H.H.: Symmetry transformations of the classical Kepler problem. J. Math. Phys. 14(8), 1125–1129 (1973)CrossRefGoogle Scholar
  15. 15.
    Vermeeren, M.: Modified Equations for Variational Integrators Numer. Math. 137(4), 1007–1037 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Will, C.M.: Theory and experiment in gravitational physics, vol. 1. Cambridge University Press (1981)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations