Advanced Technologies: Paperless Hospital, the Cost and the Benefits

  • Charles R. DoarnEmail author


Healthcare in the twenty-first century has significantly evolved over the last 100 years or so with the integration of telecommunication and information technologies. Concomitant with sensors, data storage systems, and other nascent technologies available today, paper in medicine is slowly disappearing. The convergence of these technologies permits us to manage our lives and manage our healthcare in different ways. In the nineteenth century, the medical community practiced based on what is new at the time. New technologies often took generations to become fully integrated. Today, technologies change so rapidly, and the healthcare system cannot keep pace. There are challenges to the “paperless” hospital, including cybersecurity and data integrity. However, smart people are addressing these issues. There are also costs and benefits to integrating technologies into medical care. This chapter presents a review of computing power, telecommunications, imaging, sensors, artificial intelligence, and – probably the most important attribute in this new paradigm – the human. Advanced technologies and its integration in modern medicine are the only way to address the disparities and inequities in the continuum of care from the cradle to the grave. Without innovation, patients must wait longer, data sets become unwielding, and every aspect of the system suffers. As we move into the second quarter of the twenty-first century, we must be vigilant in our investment in technology and evaluate the costs and the benefits.


Paperless Technology Telemedicine m-Health Advanced technologies Robotics Sensors Imaging Telecommunications Information technology 


  1. 1.
    Doarn CR, Merrell RC. Hemerodrome: a messenger and medicine. Telemed J E Health. 2018;24(3):171–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Falagas ME, Zarkadoulia EA, Samonis G. Arab science in the golden age (750–1258 CE) and today. FASEB J. 2006;20(10):1581–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Carr N. Is Google making us stupid? Yearbook Nat Soc Study Educat. 2008;107(2):89–94.CrossRefGoogle Scholar
  4. 4.
    Le Fanu J. Rise and fall of modern medicine. Lancet. 1999;354(9177):518.PubMedCrossRefGoogle Scholar
  5. 5.
    Roguin A. Rene Theophile Hyacinthe Laënnec (1781–1826): the man behind the Stethoscope. Clin Med Res. 2006;4(3):230–5.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ataman AD, Vatanoğlu-Lutz EE, Yıldırım G. Medicine in stamps-Ignaz Semmelweis and Puerperal Fever. J Turkish German Gynecol Assoc. 2013;14(1):35–9.CrossRefGoogle Scholar
  7. 7.
    Osler W. Evolution of modern medicine. New Haven: Yale University Press; 1943.Google Scholar
  8. 8.
    Christakis NA. The ellipsis of prognosis in modern medical thought. Social Sci Med. 1997;44(3):301–15.CrossRefGoogle Scholar
  9. 9.
    Congdon K. Is epic future proof. Health IT outcomes. 2014. Last accessed 24 May 2018.
  10. 10.
    Clarke A, Adamson J, Watt I, Sheard L, Cairns P, Wright J. The impact of electronic records on patient safety: a qualitative study. BMC Med Inform Decis Mak. 2016;16:62.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yoldi-Negrete M, Morales-Cedillo IP, Navarro-Castellanos I, Fresán-Orellana A, Panduro-Flores R, Becerra-Palars C. Combining adobe forms and dropbox to obtain a low-cost electronic data collection system. Telemed J E Health. e-Pub Jun 22, 2018.Google Scholar
  12. 12.
    Hanoon M. OR staff reap rewards of paperless patient tracking system. OR Manager. 2015;31(6):22–3.Google Scholar
  13. 13.
    Ho C, Tsakonas E, Tran K, Cimon K, Severn M, Mierzwinski-Urban M, Corcos J, Pautler S. Robot-assisted surgery compared with open surgery and laparoscopic surgery: clinical effectiveness and economic analyses [Internet]. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2011 (Technology report no. 137). [cited 2011-09-20]. Available from: Last accessed 24 May 2018.
  14. 14.
    Russell LB. Opportunity costs in modern medicine. Health Aff. 1992;11(2):162–9.CrossRefGoogle Scholar
  15. 15.
    Lomas J, Claxton K, Martin S, Soares M. Resolving the “cost-effective but unaffordable” paradox: estimating the health opportunity costs of nonmarginal budget impacts. Value Health. 2018;21(3):266–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Sandmann FG, Robotham JV, Deeny SR, Edmunds WJ, Jit M. Estimating the opportunity costs of bed-days. Health Econ. 2018;27(3):592–605.PubMedCrossRefGoogle Scholar
  17. 17.
    Abugabah A. Integrating RFID with healthcare information systems: toward smart hospitals. Asian J Inform Technol. 2017;16(9):734–7.Google Scholar
  18. 18.
    Fisher JA, Monahan T. Tracking the social dimensions of RFID systems in hospitals. Int J Med Inform. 2008;77(3):176–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Ker J-I, Wang Y, Hajli N. Examining the impact of health information systems on healthcare service improvement: the case of reducing in patient-flow delays in a US hospital. Technol Forecast Social Change. 2018;127:188–98.CrossRefGoogle Scholar
  20. 20.
    Cios KJ, Moore GW. Uniqueness of medical data mining. Artif Intell Med. 2002;26(1–2):1–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Shortliffe EH, Barnett GO. Medical data: their acquisition, storage, and use. In:Medical informatics. New York: Springer; 2001. p. 41–75.CrossRefGoogle Scholar
  22. 22.
    Chang V, Wills G. A model to compare cloud and non-cloud storage of Big Data. Future Gener Comput Sys. 2016;57:56–76.CrossRefGoogle Scholar
  23. 23.
    Hurlen P, Pedersen J. Can big data solve small problems? Paper use in a paperless hospital. Stud Health Technol Inform. 2016;228:542–6.PubMedGoogle Scholar
  24. 24.
    Devadass L, Sekaran SS, Thinakaran R. Cloud computing in healthcare. Int J Stud Res Technol Manage. 2017;5(1):25–31.Google Scholar
  25. 25.
    Cai H, Xu B, Jiang L, Vasilakos AV. IoT-based big data storage systems in cloud computing: perspectives and challenges. IEEE Internet Things J. 2017;4(1):75–87.Google Scholar
  26. 26.
    Norman J. Computes have not caused a reduction in paper usage or printing. Last accessed 24 May 2018.
  27. 27.
    Williams TL, Lindsay MJ, Burnham JF. Online vs. Print Journals. J Electron Resour Med Libr. 2008;3(1):1–8.Google Scholar
  28. 28.
    CBC Broadcast of an Interview of Thomas Watson. Last accessed 5 Jun 2018.
  29. 29.
    Mulligan JF. The influence of Hermann von Helmholtz on Heinrich Hertz’s contributions to physics. Am J Phys. 1987;55(8):711–9.CrossRefGoogle Scholar
  30. 30.
    Ernsting C, Dombrowski ST, Oedekoven M, O’Sullivan JL, Kanzler M, Kuhlmey A, Gellert P. Using smartphones and health apps to change and manage health behaviors: a population-based survey. J Med Internet Res. 2017;19(4):e101.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li J, Yazdany J, Trupin L, Izadi Z, Gianfrancesco M, Goglin S, Schmajuk G. Capturing a patient-reported measure of physical function through an online electronic health record patient portal in an ambulatory clinic: implementation study. JMIR Med Inform. 2018;6(2):e31.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kauppinen H, Ahonen R, Mäntyselkä P, Timonen J. Medication safety and the usability of electronic prescribing as perceived by physicians-a semistructured interview among primary health care physicians in Finland. J Eval Clin Pract; 23(6):1187–94. Epub 2017 May 4.Google Scholar
  33. 33.
    Ong AP, Devcich DA, Hannam J, Lee T, Merry AF, Mitchell SJ. A ‘paperless’ wall-mounted surgical safety checklist with migrated leadership can improve compliance and team engagement. BMJ Qual Saf. 2016;25(12):971–6. Epub 2015 Dec 30.PubMedCrossRefGoogle Scholar
  34. 34.
    Dudek NL, Papp S, Gofton WT. Going paperless? Issues in converting a surgical assessment tool to an electronic version. Teach Learn Med. 2015;27(3):274–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Boonstra A, Broekhuis M. Barriers to the acceptance of electronic medical records by physicians from systematic review to taxonomy and interventions. BMC Health Serv Res. 2010;10(1):231.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hatton JD, Schmidt TM, Jelen J. Adoption of electronic health care records: Physician heuristics and hesitancy. Procedia Technol. 2012;5:706–15.CrossRefGoogle Scholar
  37. 37.
    Landman AB, Rokos IC, Burns K, Van Gelder CM, Fisher RM, Dunford JV, Cone DC, Bogucki S. An open, interoperable, and scalable prehospital information technology network architecture. Prehosp Emerg Care. 2011;15(2):149–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Singh VK, Lillrank P, editors. Planning and designing healthcare facilities: a lean, innovative, and evidence-based approach. Boca raton: CRC Press; 2017. p. 95–130.Google Scholar
  39. 39.
    Potter P, Allen K, Costantinou E, Klinkenberg WD, Malen J, Norris T, O’Connor E, et al. Evaluation of sensor technology to detect fall risk and prevent falls in acute care. Jt Comm J Qual Patient Saf. 2017;43(8):414–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Majumder S, Mondal T, Deen MJ. Wearable sensors for remote health monitoring. Sensors. 2017;17(1):130.CrossRefGoogle Scholar
  41. 41.
    Casselman J, Onopa N, Khansa L. Wearable healthcare: lessons from the past and a peek into the future. Telematics Inform. 2017;34(7):1011–23.CrossRefGoogle Scholar
  42. 42.
    Morozov S, Guseva E, Ledikhova N, Vladzymyrskyy A, Safronov D. Telemedicine-based system for quality management and peer review in radiology. Insights Imaging. 2018;9(3):337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bashshur RL, Krupinski EA, Weinstein RS, Dunn MR, Bashshur N. The empirical foundations of telepathology: evidence of feasibility and intermediate effects. Telemed J E Health. 2017;23(3):155–91.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bashshur RL, Krupinski EA, Thrall JH, Bashshur N. The empirical foundations of teleradiology and related applications: a review of the evidence. Telemed J E Health. 2016;22(11):868–98.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jaffray DA, Das S, Jacobs PM, Jeraj R, Lambin P. How advances in imaging will affect precision radiation oncology. Int J Radiat Oncol Biol Phys. 2018;101(2):29.CrossRefGoogle Scholar
  46. 46.
    da Costa CA, Pasluosta CF, Eskofier B, da Silva DB, da Rosa Righi R. Internet of health things: toward intelligent vital signs monitoring in hospital wards. Artif Intell Med. 2018;89:61–9. pii: S0933-3657(17)30136-7.PubMedCrossRefGoogle Scholar
  47. 47.
    Valmarska A, Miljkovic D, Konitsiotis S, Gatsios D, Lavrač N, Robnik-Šikonja M. Symptoms and medications change patterns for Parkinson’s disease patients stratification. Artif Intell Med. 2018. pii: S0933-3657(17)30587-0.Google Scholar
  48. 48.
    Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017 Apr;69S:S36–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Salsberg ES. Is the physician shortage real? Implications for the recommendations of the institute of medicine committee on the governance and financing of graduate medical education. Acad Med. 2015;90(9):1210–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Dawe SR, Pena GN, Windsor JA, Broeders JA, Cregan PC, Hewett PJ, Maddern GJ. Systematic review of skills transfer after surgical simulation-based training. Br J Surg. 2014;101(9):1063–76.PubMedCrossRefGoogle Scholar
  51. 51.
    Zevin B, Aggarwal R, Grantcharov TP. Surgical simulation in 2013: why is it still not the standard in surgical training? J Am Coll Surg. 2014;218(2):294–301.PubMedCrossRefGoogle Scholar
  52. 52.
    Salkini MW, Doarn CR, Kiehl N, Broderick TJ, Donovan JF, Gaitonde K. The role of haptic feedback in laparoscopic training using the LapMentor II. J Endourol. 2010;24(1):99–102.PubMedCrossRefGoogle Scholar
  53. 53.
    Richardson A, Hazzard M, Challman SD, Morgenstein AM, Brueckner JK. A “Second Life” for gross anatomy: applications for multiuser virtual environments in teaching the anatomical sciences. Anat Sci Educ. 2011;4(1):39–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Lee LMJ, Goldman HM, Hortsch M. The virtual microscopy database-sharing digital microscope images for research and education. Anat Sci Educ. 2018;11:510–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Armstrong DG, Kleidermacher DN, Klonoff DC, Slepian MJ. Cybersecurity regulation of wireless devices for performance and assurance in the age of “medjacking”. J Diabetes Sci Technol. 2015;10(2):435–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Arora S, Yttri J, Nilse W. Privacy and security in mobile health (mHealth) research. Alcohol Res. 2014;36(1):143–51.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Slotwiner DJ, Deering TF, Fu K, Russo AM, Walsh MN, Van Hare GF. Cybersecurity vulnerabilities of cardiac implantable electronic devices: communication strategies for clinicians-proceedings of the heart rhythm society’s leadership summit: endorsed by the Heart Rhythm Society Board of Trustees. Heart Rhythm. 2018. pii: S1547-5271(18)30467-3.Google Scholar
  58. 58.
    Hoyler M, Finlayson SR, McClain CD, Meara JG, Hagander L. Shortage of doctors, shortage of data: a review of the global surgery, obstetrics, and anesthesia workforce literature. World J Surg. 2014;38(2):269–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Mercer C. Family medicine faces shortage of doctors willing to teach. CMAJ. 2018;190(21):E666.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pandya A, Gaziano TA, Weinstein MC, Cutler D. More Americans living longer with cardiovascular disease will increase costs while lowering quality of life. Health Aff (Millwood). 2013;32(10):1706–14.PubMedCentralCrossRefGoogle Scholar
  61. 61.
    Moses GR, Doarn CR. Barriers to wider adoption of mobile telerobotic surgery: engineering, clinical and business challenges. Stud Health Technol Inform. 2008;132:309–12.Google Scholar
  62. 62.
    Doarn CR, Anvari M, Low T, Broderick TJ. Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed J E Health. 2009;15(4):325–35.PubMedCrossRefGoogle Scholar
  63. 63.
    Harnett BM, Doarn CR, Rosen J, Hannaford B, Broderick TJ. Evaluation of unmanned airborne vehicles and mobile robotic telesurgery in an extreme environment. Telemed J E Health. 2008;14(6):539–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Lum MJH, Rosen J, King H, Friedman DCW, Donlin G, Sankaranarayanan G, Harnett B, Huffman L, Doarn C, Broderick TJ, Hannaford B. Telesurgery via unmanned aerial vehicle (UAV) with a field deployable surgical robot. Stud Health Technol Inform. 2007;125:313–5.PubMedGoogle Scholar
  65. 65.
    Sterbis JR, Hanly RJ, Herman BC, Marohn MR, Broderick TJ, Shih SP, Harnett B, Doarn CR, Schenkman NS. Transcontinental telesurgical nephrectomy using the da Vinci robot in a porcine model. Urology. 2008;71(5):971–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Buse S, Hach CE, Klumpen P, Schmitz K, Mager R, Mottrie A, Haferkamp A. Cost-effectiveness analysis of robot-assisted vs open partial nephrectomy. Int J Med Robot. 2018;28:e1920.CrossRefGoogle Scholar
  67. 67.
    Weinstein RS, Krupinski EA, Doarn CR. Clinical examination component of telemedicine, telehealth, m-health, and connected health practices. Med Clinics North Am. 2018;102(3):533–44.CrossRefGoogle Scholar
  68. 68.
    Bashshur RL, Shannon GW, Smith BR, Alverson D, Antoniotti N, Barsan W, Bashshur N, Brown EM, Coye MJ, Doarn CR, Ferguson S, Grigsby J, Krupinski EA, Kvedar JC, Linkous J, Merrell RC, Nesbitt T, Poropatich R, Rheuban K, Sanders J, Watson A, Weinstein RS, Yellowlees P. The empirical foundations of telemedicine interventions for chronic disease management. Telemed J E Health. 2014;20(9):769–800. ePub June 26.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bashshur RL, Howell JD, Krupinski EA, Harms KM, Bashshur N, Doarn CR. The empirical foundations of telemedicine intervention in primary care. Telemed J E Health. 2016;22(5):342–75.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bashshur RL, Shannon GW, Bashshur N, Yellowlees PM. The empirical evidence for telemedicine interventions in mental disorders. Telemed J E Health. 2016;22(2):81–113.CrossRefGoogle Scholar
  71. 71.
    Bashshur RL, Shannon GW, Tejasvi T, Kvedar JC, Gates M. The empirical foundations of teledermatology: a review of the research evidence. Telemed J E Health. 2015;21(12):953–79.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bashshur RL, Shannon GW, Smith BR, Woodward MA. The empirical evidence for the telemedicine intervention in diabetes management. Telemed J E Health. 2015 May;21(5):321–54.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Doarn CR, Nicogossian AE, Merrell RC. Application of telemedicine in the United States Space Program. Telemed J. 1998;4(1):19–30.PubMedCrossRefGoogle Scholar
  74. 74.
    Poropatich R, Lai E, McVeigh F, Bashshur R, The US. Army telemedicine and m-health program: making a difference at home and abroad. Telemed J E Health. 2013;19(5):380–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Doarn CR, Latifi R, Poropatich RK, Sokolovich N, Kosiak D, Hostiuc F, Zoicas C, Arafat R. Development and validation of telemedicine for disaster response: the NATO Multinational System. Telemed J E Health. 2018. ePub January 4, 2018.Google Scholar
  76. 76.
    Latifi R, Dasho E, Shatri Z, Tilley E, Osmani KL, Doarn CR, Dogjani A, Olldashi F, Koçiraj A, Merrell RC. Telemedicine as an innovative model for rebuilding medical systems in developing countries through multipartnership collaboration: the case of Albania. Telemed J E Health. 2015;21(6):503–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Latifi R, Tilley EH. Telemedicine for disaster management: can it transform chaos into an organized, structured care from the distance? Am J Disaster Med. 2014;9(1):25–37.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Family and Community MedicineUniversity of Cincinnati, College of MedicineCincinnatiUSA

Personalised recommendations