Advertisement

Dependency-Based Query/View Synchronization upon Schema Evolutions

  • Loredana Caruccio
  • Giuseppe Polese
  • Genoveffa Tortora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11158)

Abstract

Query/view synchronization upon the evolution of a database schema is a critical problem that has drawn the attention of many researchers in the database community. It entails rewriting queries and views to make them continue work on the new schema version. Although several techniques have been proposed for this problem, many issues need yet to be tackled for evolutions concerning the deletion of schema constructs, hence yielding loss of information. In this paper, we propose a new methodology to rewrite queries and views whose definitions are based on information that have been lost during the schema evolution process. The methodology exploits (relaxed) functional dependencies to automatically rewrite queries and views trying to preserve their semantics.

Keywords

Schema evolution Query rewriting Functional dependency 

References

  1. 1.
    Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (COMAD), pp. 1–12. ACM (2007)Google Scholar
  2. 2.
    Bernstein, P.A., Rahm, E.: Data warehouse scenarios for model management. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 1–15. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45393-8_1CrossRefGoogle Scholar
  3. 3.
    Bertino, E.: A view mechanism for object-oriented databases. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp. 136–151. Springer, Heidelberg (1992).  https://doi.org/10.1007/BFb0032428CrossRefGoogle Scholar
  4. 4.
    Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. http://archive.ics.uci.edu/ml/index.php. Accessed 3 Mar 2018
  5. 5.
    Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for data cleaning. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 746–755. IEEE (2007)Google Scholar
  6. 6.
    Caruccio, L., Deufemia, V., Polese, G.: On the discovery of relaxed functional dependencies. In: Proceedings of the 20th International Database Engineering & Applications Symposium (IDEAS), pp. 53–61 (2016)Google Scholar
  7. 7.
    Caruccio, L., Deufemia, V., Polese, G.: Relaxed functional dependencies - a survey of approaches. IEEE Trans. Knowl. Data Eng. 28(1), 147–165 (2016)CrossRefGoogle Scholar
  8. 8.
    Caruccio, L., Deufemia, V., Polese, G.: Evolutionary mining of relaxed dependencies from big data collections. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, WIMS 2017, p. 5 (2017)Google Scholar
  9. 9.
    Caruccio, L., Polese, G., Tortora, G.: Synchronization of queries and views upon schema evolutions: a survey. ACM Trans. Database Syst. (TODS) 41(2), 9 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names and records. In: KDD Workshop on Data Cleaning and Object Consolidation, vol. 3, pp. 73–78 (2003)Google Scholar
  11. 11.
    Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the prism workbench. Proc. VLDB Endow. 1(1), 761–772 (2008)CrossRefGoogle Scholar
  12. 12.
    Curino, C.A., Tanca, L., Moon, H.J., Zaniolo, C.: Schema evolution in wikipedia: toward a web information system benchmark. In: Proceedings of the 10th International Conference on Enterprise Information Systems (ICEIS), pp. 323–332. Citeseer (2008)Google Scholar
  13. 13.
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)CrossRefGoogle Scholar
  14. 14.
    Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data warehouses: enabling cross-version querying via schema augmentation. Data Knowl. Eng. 59(2), 435–459 (2006)CrossRefGoogle Scholar
  15. 15.
    Hick, J.M., Hainaut, J.L.: Database application evolution: a transformational approach. Data Knowl. Eng. 59(3), 534–558 (2006)CrossRefGoogle Scholar
  16. 16.
    Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: an efficient algorithm for discovering functional and approximate dependencies. Comput. J. 42(2), 100–111 (1999)CrossRefGoogle Scholar
  17. 17.
    Hull, R.: Relative information capacity of simple relational database schemata. SIAM J. Comput. 15(3), 856–886 (1986)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N.: On the logical foundations of schema integration and evolution in heterogeneous database systems. In: Ceri, S., Tanaka, K., Tsur, S. (eds.) DOOD 1993. LNCS, vol. 760, pp. 81–100. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57530-8_6CrossRefGoogle Scholar
  19. 19.
    Lee, A.J., Nica, A., Rundensteiner, E.A.: The EVE approach: view synchronization in dynamic distributed environments. IEEE Trans. Knowl. Data Eng. 14(5), 931–954 (2002)CrossRefGoogle Scholar
  20. 20.
    Lerner, B.S.: A model for compound type changes encountered in schema evolution. ACM Trans. Database Syst. (TODS) 25(1), 83–127 (2000)CrossRefGoogle Scholar
  21. 21.
    Liu, J., Li, J., Liu, C., Chen, Y.: Discover dependencies from data - a review. IEEE Trans. Knowl. Data Eng. 24(2), 251–264 (2012)CrossRefGoogle Scholar
  22. 22.
    Melnik, S.: Generic Model Management: Concepts and Algorithms. LNCS, vol. 2967. Springer, Heidelberg (2004).  https://doi.org/10.1007/b97859CrossRefzbMATHGoogle Scholar
  23. 23.
    Noy, N.F., Klein, M.: Ontology evolution: not the same as schema evolution. Knowl. Inf. Syst. 6(4), 428–440 (2004)CrossRefGoogle Scholar
  24. 24.
    Oueslati, W., Akaichi, J.: A survey on data warehouse evolution. Int. J. Database Manag. Syst. (IJDMS) 2(4), 11–24 (2010)CrossRefGoogle Scholar
  25. 25.
    Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: Policy-regulated management of ETL evolution. In: Spaccapietra, S., Zimányi, E., Song, I.-Y. (eds.) Journal on Data Semantics XIII. LNCS, vol. 5530, pp. 147–177. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03098-7_6CrossRefGoogle Scholar
  26. 26.
    Polese, G., Vacca, M.: A dialogue-based model for the query synchronization problem. In: IEEE 5th International Conference on Intelligent Computer Communication and Processing (ICCP) (2009)Google Scholar
  27. 27.
    Polese, G., Vacca, M.: Notes on view synchronization using default logic. In: Proceedings of 17th Italian Symposium on Advanced Database Systems (SEBD), pp. 253–260 (2009)Google Scholar
  28. 28.
    Poulovassilis, A., McBrien, P.: A general formal framework for schema transformation. Data Knowl. Eng. 28(1), 47–71 (1998)CrossRefGoogle Scholar
  29. 29.
    Rundensteiner, E.A., Lee, A.J., Nica, A.: On preserving views in evolving environments. In: Knowledge Representation meets DataBases (KRDB), CEUR Workshop Proceedings, vol. 8, pp. 13.11–13.11 (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Loredana Caruccio
    • 1
  • Giuseppe Polese
    • 1
  • Genoveffa Tortora
    • 1
  1. 1.Department of Computer ScienceUniversity of SalernoFiscianoItaly

Personalised recommendations