Advertisement

Just 5 Questions: Toward a Design Framework for Immersive Analytics

  • Kim Marriott
  • Jian Chen
  • Marcel Hlawatsch
  • Takayuki Itoh
  • Miguel A. Nacenta
  • Guido Reina
  • Wolfgang Stuerzlinger
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11190)

Abstract

We present an initial design framework for immersive analytics based on Brehmer and Munzner’s “What-Why-How” data visualisation framework. We extend their framework to take into account Who are the people or teams of people who are going to use the system, and Where is the system to be used and what are the available devices and technology. In addition, the How component is extended to cater for collaboration, multisensory presentation, interaction with an underlying computational model, degree of fidelity and organisation of the workspace around the user. By doing so we provide a framework for understanding immersive analytics research and applications as well as clarifying how immersive analytics differs from traditional data visualisation and visual analytics.

Keywords

Immersive Analytics Visual analytics Data visualisation Information visualisation Design framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: IEEE Symposium on Information Visualization, INFOVIS 2005, pp. 111–117. IEEE (2005)Google Scholar
  2. 2.
    Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data a Systematic Approach. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-31190-4CrossRefzbMATHGoogle Scholar
  3. 3.
    Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, Madison (1983)Google Scholar
  4. 4.
    Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. IEEE Trans. Vis. Comput. Graph. 19(12), 2376–2385 (2013)CrossRefGoogle Scholar
  5. 5.
    Butscher, S., Hubenschmid, S., Müller, J., Fuchs, J., Reiterer, H.: Clusters, trends, and outliers: how immersive technologies can facilitate the collaborative analysis of multidimensional data. In: Proceedings SIGCHI Conference on Human Factors in Computing Systems, pp. 90:1–90:12 (2018)Google Scholar
  6. 6.
    Card, S.K., Mackinlay, J.: The structure of the information visualization design space. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 92–99. IEEE (1997)Google Scholar
  7. 7.
    Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)Google Scholar
  8. 8.
    Chen, J., Pyla, P.S., Bowman, D.A.: Testbed evaluation of navigation and text display techniques in an information-rich virtual environment. In: Proceeedings of IEEE Virtual Reality, pp. 181–289. IEEE (2004).  https://doi.org/10.1109/VR.2004.1310072
  9. 9.
    Collins, C., Carpendale, S.: VisLink: revealing relationships amongst visualizations. IEEE Trans. Vis. Comput. Graph. 13(6), 1192–1199 (2007)CrossRefGoogle Scholar
  10. 10.
    Cordeil, M., Cunningham, A., Dwyer, T., Thomas, B.H., Marriott, K.: ImAxes: immersive axes as embodied affordances for interactive multivariate data visualisation. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 71–83. ACM (2017)Google Scholar
  11. 11.
    Dinh, H.Q., Walker, N., Hodges, L.F., Song, C., Kobayashi, A.: Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. In: Proceedings IEEE Virtual Reality, pp. 222–228 (1999)Google Scholar
  12. 12.
    Dourish, P.: Where the Action Is: The Foundations of Embodied Interaction. MIT Press, Cambridge (2001)Google Scholar
  13. 13.
    Elmqvist, N., Vande Moere, A., Jetter, H.C., Cernea, D., Reiterer, H., Jankun-Kelly, T.J.: Fluid interaction for information visualization. Inf. Vis. 10(4), 327–340 (2011).  https://doi.org/10.1177/1473871611413180CrossRefGoogle Scholar
  14. 14.
    ElSayed, N.A., Smith, R.T., Marriott, K., Thomas, B.H.: Context-aware design pattern for situated analytics: blended model view controller. J. Vis. Lang. Comput. 44 (2018)CrossRefGoogle Scholar
  15. 15.
    Ens, B., Hincapié-Ramos, J.D., Irani, P.: Ethereal planes: a design framework for 2D information space in 3D mixed reality environments. In: Proceedings of the 2nd ACM Symposium on Spatial User Interaction, pp. 2–12. ACM (2014)Google Scholar
  16. 16.
    Feiner, S., MacIntyre, B., Haupt, M., Solomon, E.: Windows on the world: 2D windows for 3D augmented reality. In: Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, pp. 145–155. ACM (1993)Google Scholar
  17. 17.
    Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Queue 10(2), 30 (2012)CrossRefGoogle Scholar
  18. 18.
    Hoffman, H.G.: Physically touching virtual objects using tactile augmentation enhances the realism of virtual environments. In: IEEE 1998 Virtual Reality Annual International Symposium Proceedings, pp. 59–63 (1998)Google Scholar
  19. 19.
    Hoffman, H.G., Hollander, A., Schroder, K., Rousseau, S., Furness, T.: Physically touching and tasting virtual objects enhances the realism of virtual experiences. Virtual Real. 3(4), 226–234 (1998)CrossRefGoogle Scholar
  20. 20.
    Jansen, Y., Dragicevic, P.: An interaction model for visualizations beyond the desktop. IEEE Trans. Vis. Comput. Graph. 19(12), 2396–2405 (2013)CrossRefGoogle Scholar
  21. 21.
    Jota, R., Nacenta, M.A., Jorge, J.A., Carpendale, S., Greenberg, S.: A comparison of ray pointing techniques for very large displays. In: Proceedings of Graphics Interface 2010. pp. 269–276. Canadian Information Processing Society (2010)Google Scholar
  22. 22.
    Keim, D., Kohlhammer, J., Ellis, G. (eds.): Mastering the Information Age: Solving Problems with Visual Analytics. Eurographics Association (2010)Google Scholar
  23. 23.
    Keller, P.R., Keller, M.M.: Visual Cues: Practical Data Visualization. IEEE Press (1993)Google Scholar
  24. 24.
    Kwon, O.H., Muelder, C., Lee, K., Ma, K.L.: A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Transactions on Visualization and Computer Graphics 22(7), 1802–1815 doi: 10.1109/TVCG.2016.2520921 (July 2016)Google Scholar
  25. 25.
    Kwon, O.H., Muelder, C., Lee, K., Ma, K.L.: Spherical layout and rendering methods for immersive graph visualization. In: 2015 IEEE Pacific Visualization Symposium (PacificVis). pp. 63–67 https://doi.org/10.1109PACIFICVIS.2015.7156357 (April 2015)
  26. 26.
    LaViola Jr, J.J., Kruijff, E., McMahan, R.P., Bowman, D., Poupyrev, I.P.: 3D User Interfaces: Theory and Practice. Addison-Wesley Professional (2017)Google Scholar
  27. 27.
    Lee, B., Isenberg, P., Riche, N.H., Carpendale, S.: Beyond mouse and keyboard: Expanding design considerations for information visualization interactions. IEEE Transactions on Visualization and Computer Graphics 18(12), 2689–2698 (2012)CrossRefGoogle Scholar
  28. 28.
    Lee, B., Plaisant, C., Parr, C.S., Fekete, J.D., Henry, N.: Task taxonomy for graph visualization. In: Proceedings of the 2006 AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods for Information Visualization. pp. 1–5. ACM (2006)Google Scholar
  29. 29.
    Li, G., Bragdon, A.C., Pan, Z., Zhang, M., Swartz, S.M., Laidlaw, D.H., Zhang, C., Liu, H., Chen, J.: VisBubbles: a workflow-driven framework for scientific data analysis of time-varying biological datasets. In: SIGGRAPH Asia 2011 Posters. p. 27. ACM (2011)Google Scholar
  30. 30.
    Liu, J., Dwyer, T., Marriott, K., Millar, J., Haworth, A.: Understanding the relationship between interactive optimisation and visual analytics in the context of prostate brachytherapy. IEEE Transactions on Visualization and Computer Graphics 24(1), 319–329 (2018)CrossRefGoogle Scholar
  31. 31.
    Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Transactions On Graphics (ToG) 5(2), 110–141 (1986)CrossRefGoogle Scholar
  32. 32.
    McDonnel, B., Elmqvist, N.: Towards utilizing GPUs in information visualization: A model and implementation of image-space operations. IEEE Transactions on Visualization and Computer Graphics 15(6), 1105–1112 http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.191 (2009)CrossRefGoogle Scholar
  33. 33.
    Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. Proc. SPIE 2351, 282–292 (1995)CrossRefGoogle Scholar
  34. 34.
    Munzner, T.: Visualization Analysis and Design. CRC Press, Boca Raton (2014)CrossRefGoogle Scholar
  35. 35.
    Nacenta, M.A., et al.: E-conic: a perspective-aware interface for multi-display environments. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, pp. 279–288. ACM (2007)Google Scholar
  36. 36.
    Patterson, R.E., Blaha, L.M., Grinstein, G.G., Liggett, K.K., Kaveney, D.E., Sheldon, K.C., Havig, P.R., Moore, J.A.: A human cognition framework for information visualization. Comput. Graph. 42, 42–58 (2014)CrossRefGoogle Scholar
  37. 37.
    Petford, J., Nacenta, M.A., Gutwin, C.: Pointing all around you: selection performance of mouse and ray-cast pointing in full-coverage displays. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 533. ACM (2018)Google Scholar
  38. 38.
    Piringer, H., Kosara, R., Hauser, H.: Interactive focus+ context visualization with linked 2D/3D scatterplots. In: Proceedings of the Second International Conference on Coordinated and Multiple Views in Exploratory Visualization, pp. 49–60. IEEE (2004)Google Scholar
  39. 39.
    Pirolli, P., Card, S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of International Conference on Intelligence Analysis (2005)Google Scholar
  40. 40.
    Ragan, E.D., Endert, A., Sanyal, J., Chen, J.: Characterizing provenance in visualization and data analysis an organizational framework of provenance types and purposes. IEEE Trans. Vis. Comput. Graph. 22(1), 31–40 (2016).  https://doi.org/10.1109/TVCG.2015.2467551CrossRefGoogle Scholar
  41. 41.
    Ranasinghe, N., et al.: Season traveller: multisensory narration for enhancing the virtual reality experience. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI), pp. 577:1–577:13. ACM, New York (2018)Google Scholar
  42. 42.
    Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. 20(12), 1604–1613 (2014)CrossRefGoogle Scholar
  43. 43.
    Sanchez-Vives, M.V., Slater, M.: From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6(4), 332–339 (2005)CrossRefGoogle Scholar
  44. 44.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343. IEEE Press (1996)Google Scholar
  45. 45.
    Veas, E., Grasset, R., Ferencik, I., Grünewald, T., Schmalstieg, D.: Mobile augmented reality for environmental monitoring. Pers. Ubiquitous Comput. 17(7), 1515–1531 (2013)CrossRefGoogle Scholar
  46. 46.
    Wang, X.M., Zhang, T.Y., Ma, Y.X., Xia, J., Chen, W.: A survey of visual analytic pipelines. J. Comput. Sci. Technol. 31(4), 787–804 (2016)CrossRefGoogle Scholar
  47. 47.
    Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications, 2nd edn. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  48. 48.
    Ware, C.: Information Visualization: Perception for Design, 3rd edn. Elsevier, New York City (2013)Google Scholar
  49. 49.
    Wickham, H.: A layered grammar of graphics. J. Comput. Graph. Stat. 19(1), 3–28 (2010).  https://doi.org/10.1198/jcgs.2009.07098MathSciNetCrossRefGoogle Scholar
  50. 50.
    Wilkinson, L.: The Grammar of Graphics. Springer, New York (2006).  https://doi.org/10.1007/0-387-28695-0CrossRefzbMATHGoogle Scholar
  51. 51.
    Willett, W., Jansen, Y., Dragicevic, P.: Embedded data representations. IEEE Trans. Vis. Comput. Graph. 23(1), 461–470 (2017)CrossRefGoogle Scholar
  52. 52.
    Wright, H.: Introduction to Scientific Visualization. Springer, London (2007).  https://doi.org/10.1007/978-1-84628-755-8CrossRefzbMATHGoogle Scholar
  53. 53.
    Yi, J.S., ah Kang, Y., Stasko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1224–1231 (2007)CrossRefGoogle Scholar
  54. 54.
    Zhao, H., Bryant, G.W., Griffin, W., Terrill, J.E., Chen, J.: Validation of SplitVectors encoding for quantitative visualization of large-magnitude-range vector fields. IEEE Trans. Vis. Comput. Graph. 23(6), 1691–1705 (2017)CrossRefGoogle Scholar
  55. 55.
    Zhao, H., Chen, J.: Bivariate separable-dimension glyphs can improve visual analysis of holistic features. IEEE Trans. Vis. Comput. Graph. (2018, under revision). https://arxiv.org/abs/1712.02333

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kim Marriott
    • 1
  • Jian Chen
    • 2
  • Marcel Hlawatsch
    • 3
  • Takayuki Itoh
    • 4
  • Miguel A. Nacenta
    • 5
  • Guido Reina
    • 3
  • Wolfgang Stuerzlinger
    • 6
  1. 1.Monash UniversityMelbourneAustralia
  2. 2.Computer Science and Engineering, The Ohio State UniversityColumbusUSA
  3. 3.Visualization Research Center, University of Stuttgart (VISUS)StuttgartGermany
  4. 4.Department of Information SciencesOchanomizu UniversityTokyoJapan
  5. 5.University of St AndrewsSt AndrewsScotland
  6. 6.School of Interactive Arts + Technology (SIAT)Simon Fraser UniversityBurnabyCanada

Personalised recommendations