Advertisement

Situated Analytics

  • Bruce H. Thomas
  • Gregory F. Welch
  • Pierre Dragicevic
  • Niklas Elmqvist
  • Pourang Irani
  • Yvonne Jansen
  • Dieter Schmalstieg
  • Aurélien Tabard
  • Neven A. M. ElSayed
  • Ross T. Smith
  • Wesley Willett
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11190)

Abstract

This chapter introduces the concept of situated analytics that employs data representations organized in relation to germane objects, places, and persons for the purpose of understanding, sensemaking, and decision-making. The components of situated analytics are characterized in greater detail, including the users, tasks, data, representations, interactions, and analytical processes involved. Several case studies of projects and products are presented that exemplify situated analytics in action. Based on these case studies, a set of derived design considerations for building situated analytics applications are presented. Finally, there is a an outline of a research agenda of challenges and research questions to explore in the future.

Keywords

Situated analytics Immersive analytics Immersion Human-computer interaction Augmented reality Data visualisation 

References

  1. 1.
    Aliakseyeu, D., Irani, P., Lucero, A., Subramanian, S.: Multi-flick: an evaluation of flick-based scrolling techniques for pen interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1689–1698. ACM (2008)Google Scholar
  2. 2.
    Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefGoogle Scholar
  3. 3.
    Badam, S.K., Elmqvist, N.: PolyChrome: a cross-device framework for collaborative web visualization. In: Proceedings of the ACM Conference on Interactive Tabletops and Surfaces, pp. 109–118. ACM (2014). http://dl.acm.org/citation.cfm?id=2669485
  4. 4.
    Badam, S.K., Fisher, E.R., Elmqvist, N.: Munin: a peer-to-peer middleware for ubiquitous analytics and visualization spaces. IEEE Trans. Vis. Comput. Graph. 21(2), 215–228 (2015).  https://doi.org/10.1109/TVCG.2014.2337337CrossRefGoogle Scholar
  5. 5.
    Beaudouin-Lafon, M.: Instrumental interaction: an interaction model for designing post-wimp user interfaces. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 446–453. ACM (2000)Google Scholar
  6. 6.
    Beaudouin-Lafon, M., Mackay, W.E.: Research directions in situated computing. In: Extended Abstracts on Human Factors in Computing Systems. pp. 369–369. ACM (2000)Google Scholar
  7. 7.
    Bellotti, V., Back, M., Edwards, W.K., Grinter, R.E., Henderson, A., Lopes, C.: Making sense of sensing systems: Five questions for designers and researchers. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2002, pp. 415–422. ACM, New York (2002). http://doi.acm.org/10.1145/503376.503450
  8. 8.
    Bezerianos, A., Isenberg, P.: Perception of visual variables on tiled wall-sized displays for information visualization applications. IEEE Trans. Vis. Comput. Graph. 18(12), 2516–2525 (2012)CrossRefGoogle Scholar
  9. 9.
    Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality. Found. Trends Hum. Comput. Interact. 8(2–3), 73–272 (2015)CrossRefGoogle Scholar
  10. 10.
    Billinghurst, M., Kato, H.: Collaborative augmented reality. Commun. ACM 45(7), 64–70 (2002)CrossRefGoogle Scholar
  11. 11.
    Bimber, O., Raskar, R.: Spatial Augmented Reality: Merging Real and Virtual Worlds. A. K. Peters Ltd., Natick (2005)CrossRefGoogle Scholar
  12. 12.
    Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)Google Scholar
  13. 13.
    Cauchard, J.R., et al.: Visual separation in mobile multi-display environments. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 451–460. ACM (2011)Google Scholar
  14. 14.
    Chandler, T., et al.: Immersive analytics. In: Proceedings of the IEEE Symposium on Big Data Visual Analytics, pp. 73–80. IEEE (2015)Google Scholar
  15. 15.
    Chen, G., Kotz, D., et al.: A survey of context-aware mobile computing research. Technical report TR2000-381, Department of Computer Science, Dartmouth College (2000)Google Scholar
  16. 16.
    Chi, E.H.h., Riedl, J.T.: An operator interaction framework for visualization systems. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 63–70. IEEE (1998)Google Scholar
  17. 17.
    Elmqvist, N., Irani, P.: Ubiquitous analytics: interacting with big data anywhere, anytime. IEEE Comput. 46(4), 86–89 (2013)CrossRefGoogle Scholar
  18. 18.
    Elsayed, N., Thomas, B., Marriott, K., Piantadosi, J., Smith, R.: Situated analytics. In: Proceedings of the IEEE Symposium on Big Data Visual Analytics, pp. 1–8. IEEE (2015)Google Scholar
  19. 19.
    Elsayed, N., Thomas, B., Smith, R., Marriott, K., Piantadosi, J.: Using augmented reality to support situated analytics. In: Proceedings of the IEEE Conference on Virtual Reality, pp. 175–176. IEEE (2015)Google Scholar
  20. 20.
    Elsayed, N.A.M., Smith, R.T., Marriott, K., Thomas, B.H.: Blended UI controls for situated analytics. In: Proceedings of the IEEE International Symposium on Big Data Visual Analytics, pp. 1–8. IEEE (2016)Google Scholar
  21. 21.
    Elsayed, N.A., Thomas, B.H., Marriott, K., Piantadosi, J., Smith, R.T.: Situated analytics: demonstrating immersive analytical tools with Augmented Reality. J. Vis. Lang. Comput. 36, 13–23 (2016)CrossRefGoogle Scholar
  22. 22.
    Ens, B.M., Finnegan, R., Irani, P.P.: The personal cockpit: a spatial interface for effective task switching on head-worn displays. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3171–3180. ACM (2014)Google Scholar
  23. 23.
    Gruber, L., Richter-Trummer, T., Schmalstieg, D.: Real-time photometric registration from arbitrary geometry. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, pp. 119–128. IEEE (2012)Google Scholar
  24. 24.
    Hanrahan, P.: Self-illustrating phenomena. In: Visualization 2004, p. xix. IEEE (2004)Google Scholar
  25. 25.
    Huang, D., et al.: Personal visualization and personal visual analytics. IEEE Trans. Vis. Comput. Graph. 21(3), 420–433 (2015)CrossRefGoogle Scholar
  26. 26.
    Hull, R., Neaves, P., Bedford-Roberts, J.: Towards situated computing. In: Proceedings of the International Symposium on Wearable Computers, pp. 146–153. IEEE (1997)Google Scholar
  27. 27.
    Isenberg, P., Dragicevic, P., Willett, W., Bezerianos, A., Fekete, J.D.: Hybrid-image visualization for large viewing environments. IEEE Trans. Vis. Comput. Graph. 19(12), 2346–2355 (2013)CrossRefGoogle Scholar
  28. 28.
    Jansen, Y., Dragicevic, P.: An interaction model for visualizations beyond the desktop. IEEE Trans. Vis. Comput. Graph. 19(12), 2396–2405 (2013)CrossRefGoogle Scholar
  29. 29.
    Jansen, Y., et al.: Opportunities and challenges for data physicalization. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 3227–3236. ACM (2015)Google Scholar
  30. 30.
    Jansen, Y., Hornbaek, K.: A psychophysical investigation of size as a physical variable. IEEE Trans. Vis. Comput. Graph. 22(1), 479–488 (2016).  https://doi.org/10.1109/TVCG.2015.2467951CrossRefGoogle Scholar
  31. 31.
    Jordan, T.: Water flow visualization using electrolysis hydrogen bubbles (2013). https://youtu.be/memvL8NG8jc. Accessed 17 Nov 2016
  32. 32.
    Kalkofen, D., Mendez, E., Schmalstieg, D.: Interactive focus and context visualization for augmented reality. In: Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE Computer Society (2007)Google Scholar
  33. 33.
    Kalkofen, D., Sandor, C., White, S., Schmalstieg, D.: Visualization techniques for augmented reality. In: Furht, B. (ed.) Handbook of Augmented Reality, pp. 65–98. Springer, New York (2011).  https://doi.org/10.1007/978-1-4614-0064-6_3CrossRefGoogle Scholar
  34. 34.
    Kalkofen, D., Tatzgern, M., Schmalstieg, D.: Explosion diagrams in augmented reality. In: Proceedings of the IEEE Virtual Reality Conference, pp. 71–78. IEEE (2009)Google Scholar
  35. 35.
    Kavanaugh, J.: How mixed reality and machine learning are driving innovation in farming, November 2016. https://techcrunch.com/2016/11/17/how-mixed-reality-and-machine-learning-are-driving-innovation-in-farming/
  36. 36.
    Kruijff, E., Swan II, J.E., Feiner, S.: Perceptual issues in Augmented Reality revisited. In: Proceedings of the ACM/IEEE International Symposium on Mixed and Augmented Reality, vol. 9, pp. 3–12 (2010)Google Scholar
  37. 37.
    LaPointe, R.: How AI and AR apps can change agriculture, November 2016. https://softwaredevelopersindia.com/blog/ai-ar-apps-can-change-agriculture/
  38. 38.
    Lee, B., Isenberg, P., Riche, N.H., Carpendale, S.: Beyond mouse and keyboard: expanding design considerations for information visualization interactions. IEEE Trans. Vis. Comput. Graph. 18(12), 2689–2698 (2012).  https://doi.org/10.1109/TVCG.2012.204CrossRefGoogle Scholar
  39. 39.
    Lepetit, V., Berger, M.O.: An intuitive tool for outlining objects in video sequences: applications to augmented and diminished reality. In: Proceedings of the International Conference on Mixed Reality (2001)Google Scholar
  40. 40.
    Marner, M.R., Irlitti, A., Thomas, B.H.: Improving procedural task performance with augmented reality annotations. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 39–48. IEEE (2013)Google Scholar
  41. 41.
    McGill, M., Boland, D., Murray-Smith, R., Brewster, S.: A dose of reality: overcoming usability challenges in VR head-mounted displays. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 2143–2152. ACM (2015)Google Scholar
  42. 42.
    Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 77(12), 1321–1329 (1994)Google Scholar
  43. 43.
    Mojang: Minecraft, 19 December 2016. https://minecraft.net/en/
  44. 44.
    Nguyen, M.: Augmented Reality: will 2016 be the year of smart contact lens? December 2016. https://www.wearable-technologies.com/2016/02/augmented-reality-will-2016-be-the-year-of-smart-contact-lens/
  45. 45.
    Offenhuber, D., Bertini, E., Stefaner, M.: Indexical visualization with Dietmar Offenhuber - data stories podcast (2016). http://datastori.es/80-indexical-visualization-with-dietmar-offenhuber/
  46. 46.
    Offenhuber, D., Telhan, O.: Indexical visualization - the data-less information display. In: Ubiquitous Computing, Complexity and Culture, p. 288 (2015)Google Scholar
  47. 47.
    O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24(05), 939–973 (2001)CrossRefGoogle Scholar
  48. 48.
    O’Regan, J.K.: What it is like to see: a sensorimotor theory of perceptual experience. Synthese 129(1), 79–103 (2001)CrossRefGoogle Scholar
  49. 49.
    Raskar, R.: Projector-Based Three Dimensional Graphics. Ph.D., University of North Carolina at Chapel Hill (2001)Google Scholar
  50. 50.
    Raskar, R., Welch, G., Chen, W.C.: Table-top spatially-augmented reality: bringing physical models to life with projected imagery. In: Proceedings of the IEEE and ACM International Workshop on Augmented Reality. IEEE Computer Society, Washington, DC (1999)Google Scholar
  51. 51.
    Raskar, R., Welch, G., Fuchs, H.: Spatially augmented reality. In: Behringer, R., Klinker, G., Mizell, D. (eds.) Augmented Reality: Placing Artificial Objects in Real Scenes, pp. 63–72. A.K. Peters Ltd., San Francisco (1998)Google Scholar
  52. 52.
    Raskar, R., Welch, G., Low, K.L., Bandyopadhyay, D.: Shader lamps: animating real objects with image-based illumination. In: Gortler, S.J., Myszkowski, K. (eds.) Rendering Techniques 2001. Eurographics, pp. 89–102. Springer, Vienna (2001).  https://doi.org/10.1007/978-3-7091-6242-2_9CrossRefGoogle Scholar
  53. 53.
    Roberts, J.C., Ritsos, P.D., Badam, S.K., Brodbeck, D., Kennedy, J., Elmqvist, N.: Visualization beyond the desktop - the next big thing. IEEE Comput. Graph. Appl. 34(6), 26–34 (2014).  https://doi.org/10.1109/MCG.2014.82CrossRefGoogle Scholar
  54. 54.
    Schmalstieg, D., Hollerer, T.: Augmented Reality: Principles and Practice. Addison-Wesley Professional, Boston (2016)CrossRefGoogle Scholar
  55. 55.
    Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 364(1535), 3549–3557 (2009)CrossRefGoogle Scholar
  56. 56.
    Thomas, B.H.: Have we achieved the ultimate wearable computer? In: Proceedings of the International Symposium on Wearable Computers, pp. 104–107. IEEE (2012)Google Scholar
  57. 57.
    Thomas, B.H., et al.: Spatial augmented reality–a tool for 3D data visualization. In: Proceedings of the IEEE International Workshop on 3DVis, pp. 45–50. IEEE (2014)Google Scholar
  58. 58.
    Thomas, J.J., Cook, K.A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Press (2005)Google Scholar
  59. 59.
    Wang, F., Cao, X., Ren, X., Irani, P.: Detecting and leveraging finger orientation for interaction with direct-touch surfaces. In: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology, pp. 23–32. ACM (2009)Google Scholar
  60. 60.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Trans. Inf. Syst. (TOIS) 10(1), 91–102 (1992)CrossRefGoogle Scholar
  61. 61.
    Weigel, M., Lu, T., Bailly, G., Oulasvirta, A., Majidi, C., Steimle, J.: iSkin: flexible, stretchable and visually customizable on-body touch sensors for mobile computing. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2991–3000. ACM (2015)Google Scholar
  62. 62.
    Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36(7), 75–84 (1993)CrossRefGoogle Scholar
  63. 63.
    White, S., Feiner, S.: SiteLens: situated visualization techniques for urban site visits. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 1117–1120. ACM (2009)Google Scholar
  64. 64.
    Willett, W., Jansen, Y., Dragicevic, P.: Embedded data representations. IEEE Trans. Vis. Comput. Graph. 23(1), 461–470 (2017)CrossRefGoogle Scholar
  65. 65.
    Wisneski, C., et al.: Ambient displays: turning architectural space into an interface between people and digital information. In: Streitz, N.A., Konomi, S., Burkhardt, H.-J. (eds.) CoBuild 1998. LNCS, vol. 1370, pp. 22–32. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-69706-3_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bruce H. Thomas
    • 1
  • Gregory F. Welch
    • 2
  • Pierre Dragicevic
    • 3
  • Niklas Elmqvist
    • 4
  • Pourang Irani
    • 5
  • Yvonne Jansen
    • 6
  • Dieter Schmalstieg
    • 7
  • Aurélien Tabard
    • 8
  • Neven A. M. ElSayed
    • 9
  • Ross T. Smith
    • 1
  • Wesley Willett
    • 10
  1. 1.University of South AustraliaAdelaideAustralia
  2. 2.University of Central FloridaOrlandoUSA
  3. 3.InriaRocquencourtFrance
  4. 4.University of MarylandCollege ParkUSA
  5. 5.University of ManitobaWinnipegCanada
  6. 6.Sorbonne UniversityParisFrance
  7. 7.Graz University of TechnologyGrazAustria
  8. 8.University LyonLyonFrance
  9. 9.Benha UniversityBenhaEgypt
  10. 10.University of CalgaryCalgaryCanada

Personalised recommendations