Advertisement

Immersive Analytics: Time to Reconsider the Value of 3D for Information Visualisation

  • Kim Marriott
  • Jian Chen
  • Marcel Hlawatsch
  • Takayuki Itoh
  • Miguel A. Nacenta
  • Guido Reina
  • Wolfgang Stuerzlinger
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11190)

Abstract

Modern virtual reality display technologies engender spatial immersion by using a variety of depth cues such as perspective and head-tracked binocular presentation to create visually realistic 3D worlds. While 3D visualisations are common in scientific visualisation, they are much less common in information visualisation. In this chapter we explore whether immersive analytic applications should continue to use traditional 2D information visualisations or whether there are situations when 3D may offer benefits. We identify a number of potential applications of 3D depth cues for abstract data visualisation: using depth to show an additional data dimension, such as in 2.5D network layouts, views on non-flat surfaces and egocentric views in which the data is placed around the viewer, and visualising abstract data with a spatial embedding. Another important potential benefit is the ability to arrange multiple views in the 3D space around the user and to attach abstract visualisations to objects in the real world.

Keywords

Immersive analytics Data visualisation Information visualisation 3D 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alper, B., Hollerer, T., Kuchera-Morin, J., Forbes, A.: Stereoscopic highlighting: 2D graph visualization on stereo displays. IEEE Trans. Vis. Comput. Graph. 17(12), 2325–2333 (2011)CrossRefGoogle Scholar
  2. 2.
    Andrews, C., Endert, A., North, C.: Space to think: large high-resolution displays for sensemaking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 55–64. ACM (2010)Google Scholar
  3. 3.
    Bach, B., Pietriga, E., Fekete, J.D.: Visualizing dynamic networks with matrix cubes. In: The SIGCHI Conference on Human Factors in Computing Systems, pp. 877–886 (2014)Google Scholar
  4. 4.
    Bach, B., Dragicevic, P., Archambault, D., Hurter, C., Carpendale, S.: A review of temporal data visualizations based on space-time cube operations. In: Eurographics Conference on Visualization (EuroVis) (2014)Google Scholar
  5. 5.
    Belcher, D., Billinghurst, M., Hayes, S., Stiles, R.: Using augmented reality for visualizing complex graphs in three dimensions. In: Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, p. 84. IEEE Computer Society (2003)Google Scholar
  6. 6.
    Billinghurst, M., Kato, H., Poupyrev, I.: The magicbook: a transitional ar interface. Comput. Graph. 25(5), 745–753 (2001)CrossRefGoogle Scholar
  7. 7.
    Bowman, D.A., North, C., Chen, J., Polys, N.F., Pyla, P.S., Yilmaz, U.: Information-rich virtual environments: theory, tools, and research agenda. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 81–90. ACM (2003)Google Scholar
  8. 8.
    Brandes, U., Dwyer, T., Schreiber, F.: Visual understanding of metabolic pathways across organisms using layout in two and a half dimensions. J. Integr. Bioinform. 1(1), 11–26 (2004)CrossRefGoogle Scholar
  9. 9.
    Brath, R.: 3D infovis is here to stay: deal with it. In: 2014 IEEE VIS International Workshop on 3DVis, pp. 25–31 (2014)Google Scholar
  10. 10.
    Brath, R., MacMurchy, P.: Sphere-based information visualization: challenges and benefits. In: IV, pp. 1–6 (2012)Google Scholar
  11. 11.
    Butscher, S., Hubenschmid, S., Müller, J., Fuchs, J., Reiterer, H.: Clusters, trends, and outliers: how immersive technologies can facilitate the collaborative analysis of multidimensional data. In: Proceedings SIGCHI Conference on Human Factors in Computing Systems, pp. 90:1–90:12 (2018)Google Scholar
  12. 12.
    Carlbom, I., Paciorek, J.: Planar geometric projections and viewing transformations. ACM Comput. Surv. (CSUR) 10(4), 465–502 (1978)CrossRefGoogle Scholar
  13. 13.
    Chen, J., Pyla, P.S., Bowman, D.A.: Testbed evaluation of navigation and text display techniques in an information-rich virtual environment. In: IEEE Proceedings of Virtual Reality, pp. 181–289. IEEE (2004)Google Scholar
  14. 14.
    Chen, W., et al.: A novel interface for interactive exploration of DTI fibers. IEEE Trans. Vis. Comput. Graph. 15(6), 1433–1440 (2009)CrossRefGoogle Scholar
  15. 15.
    Cockburn, A.: Revisiting 2D vs 3D implications on spatial memory. In: Proceedings of the Fifth Conference on Australasian User Interface-Volume 28, pp. 25–31. Australian Computer Society, Inc. (2004)Google Scholar
  16. 16.
    Cockburn, A., McKenzie, B.: An evaluation of cone trees. In: McDonald, S., Waern, Y., Cockton, G. (eds.) People and Computers XIV – Usability or Else!, pp. 425–436. Springer, London (2000).  https://doi.org/10.1007/978-1-4471-0515-2_28CrossRefGoogle Scholar
  17. 17.
    Cockburn, A., McKenzie, B.: 3D or not 3D?: evaluating the effect of the third dimension in a document management system. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 434–441. ACM (2001)Google Scholar
  18. 18.
    Cockburn, A., McKenzie, B.: Evaluating the effectiveness of spatial memory in 2D and 3D physical and virtual environments. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 203–210. ACM (2002)Google Scholar
  19. 19.
    Cockburn, A., McKenzie, B.: Evaluating spatial memory in two and three dimensions. Int. J. Hum. Comput. Stud. 61(3), 359–373 (2004)CrossRefGoogle Scholar
  20. 20.
    Collins, C., Carpendale, S.: VisLink: revealing relationships amongst visualizations. IEEE Trans. Vis. Comput. Graph. 13(6), 1192–1199 (2007)CrossRefGoogle Scholar
  21. 21.
    Cordeil, M., Cunningham, A., Dwyer, T., Thomas, B.H., Marriott, K.: ImAxes: immersive axes as embodied affordances for interactive multivariate data visualisation. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 71–83. ACM (2017)Google Scholar
  22. 22.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992)CrossRefGoogle Scholar
  23. 23.
    Cutting, J.E.: Rigidity in cinema seen from the front row, side aisle. J. Exp. Psychol. Hum. Percept. Perform. 13(3), 323–334 (1987)CrossRefGoogle Scholar
  24. 24.
    Cutting, J.E., Vishton, P.M.: Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. In: Perception of Space and Motion, pp. 69–117. Elsevier (1995)CrossRefGoogle Scholar
  25. 25.
    Dodgson, N.A.: Autostereoscopic 3D displays. Computer 38(8), 31–36 (2005)CrossRefGoogle Scholar
  26. 26.
    Dübel, S., Röhlig, M., Schumann, H., Trapp, M.: 2D and 3D presentation of spatial data: a systematic review. In: IEEE VIS International Workshop on 3DVis, pp. 11–18. IEEE (2014)Google Scholar
  27. 27.
    Duwaer, A., Van Den Brink, G.: What is the diplopia threshold? Atten. Percept. Psychophys. 29(4), 295–309 (1981)CrossRefGoogle Scholar
  28. 28.
    Dwyer, T., Eades, P.: Visualising a fund manager flow graph with columns and worms. In: Proceedings Sixth International Conference on Information Visualisation, pp. 147–152. IEEE (2002)Google Scholar
  29. 29.
    Eades, P., Feng, Q.-W.: Multilevel visualization of clustered graphs. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 101–112. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-62495-3_41CrossRefGoogle Scholar
  30. 30.
    Elmqvist, N., Dragicevic, P., Fekete, J.D.: Rolling the dice: multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans. Vis. Comput. Graph. 14(6), 1539–1148 (2008)CrossRefGoogle Scholar
  31. 31.
    Elmqvist, N., Tsigas, P.: A taxonomy of 3D occlusion management for visualization. IEEE Trans. Vis. Comput. Graph. 14(5), 1095–1109 (2008)CrossRefGoogle Scholar
  32. 32.
    ElSayed, N.A., Smith, R.T., Marriott, K., Thomas, B.H.: Context-aware design pattern for situated analytics: blended model view controller. J. Vis. Lang. Comput. 44, 1–12 (2018)CrossRefGoogle Scholar
  33. 33.
    Englund, R., Ropinski, T.: Evaluating the perception of semi-transparent structures in direct volume rendering techniques. In: SIGGRAPH ASIA 2016 Symposium on Visualization, pp. 9:1–9:8. ACM (2016)Google Scholar
  34. 34.
    Ens, B., Hincapié-Ramos, J.D., Irani, P.: Ethereal planes: a design framework for 2D information space in 3D mixed reality environments. In: Proceedings of the 2nd ACM Symposium on Spatial User Interaction, pp. 2–12. ACM (2014)Google Scholar
  35. 35.
    Ens, B.M., Finnegan, R., Irani, P.P.: The personal cockpit: a spatial interface for effective task switching on head-worn displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3171–3180. ACM (2014)Google Scholar
  36. 36.
    Favalora, G.E.: Volumetric 3D displays and application infrastructure. Computer 38(8), 37–44 (2005)CrossRefGoogle Scholar
  37. 37.
    Feiner, S., MacIntyre, B., Haupt, M., Solomon, E.: Windows on the world: 2D windows for 3D augmented reality. In: Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, pp. 145–155. ACM (1993)Google Scholar
  38. 38.
    Fincham, E., Walton, J.: The reciprocal actions of accommodation and convergence. J. Physiol. 137(3), 488–508 (1957)CrossRefGoogle Scholar
  39. 39.
    Gracia, A., González, S., Robles, V., Menasalvas, E., von Landesberger, T.: New insights into the suitability of the third dimension for visualizing multivariate/multidimensional data: a study based on loss of quality quantification. Inf. Vis. 15(1), 3–30 (2014)CrossRefGoogle Scholar
  40. 40.
    Greffard, N., Picarougne, F., Kuntz, P.: Visual community detection: an evaluation of 2D, 3D perspective and 3D stereoscopic displays. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 215–225. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25878-7_21CrossRefGoogle Scholar
  41. 41.
    Grossman, T., Wigdor, D., Balakrishnan, R.: Exploring and reducing the effects of orientation on text readability in volumetric displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 483–492. ACM (2007)Google Scholar
  42. 42.
    Hägerstrand, T.: What about people in regional science? Reg. Sci. Assoc. 24(1), 7–24 (1970)CrossRefGoogle Scholar
  43. 43.
    Hancock, M., ten Cate, T., Carpendale, S., Isenberg, T.: Supporting sandtray therapy on an interactive tabletop. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010, pp. 2133–2142. ACM (2010)Google Scholar
  44. 44.
    Hancock, M., Nacenta, M., Gutwin, C., Carpendale, S.: The effects of changing projection geometry on the interpretation of 3D orientation on tabletops. In: Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, pp. 157–164. ACM (2009)Google Scholar
  45. 45.
    Haskell, I.D., Wickens, C.D.: Two-and three-dimensional displays for aviation: a theoretical and empirical comparison. Int. J. Aviat. Psychol. 3(2), 87–109 (1993)CrossRefGoogle Scholar
  46. 46.
    Held, R., Cooper, E., Banks, M.: Blur and disparity are complementary cues to depth. Curr. Biol. 22(5), 426–431 (2012)CrossRefGoogle Scholar
  47. 47.
    Hess, R.F., To, L., Zhou, J., Wang, G., Cooperstock, J.R.: Stereo vision: the haves and have-nots. i-Perception 6(3), 2041669515593028 (2015)CrossRefGoogle Scholar
  48. 48.
    Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 33–33 (2008)CrossRefGoogle Scholar
  49. 49.
    Holografika Inc.: Holografika website. http://www.holografika.com. Accessed 17 Oct 2017
  50. 50.
    Irani, P., Ware, C.: Diagramming information structures using 3D perceptual primitives. ACM Trans. Comput. Hum. Interact. (TOCHI) 10(1), 1–19 (2003)CrossRefGoogle Scholar
  51. 51.
    Isenberg, P., Isenberg, T., Hesselmann, T., Lee, B., von Zadow, U., Tang, A.: Data visualization on interactive surfaces: a research agenda. IEEE Comput. Graph. Appl. 33(2), 16–24 (2013)CrossRefGoogle Scholar
  52. 52.
    Jansen, Y., et al.: Opportunities and challenges for data physicalization. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 3227–3236. ACM (2015)Google Scholar
  53. 53.
    Jianu, R., Demiralp, C., Laidlaw, D.: Exploring 3D DTI fiber tracts with linked 2D representations. IEEE Trans. Vis. Comput. Graph. 15(6), 1449–1456 (2009)CrossRefGoogle Scholar
  54. 54.
    Kerren, A., Schreiber, F.: Why integrate InfoVis and SciVis?: an example from systems biology. IEEE Comput. Graph. Appl. 34, 69–73 (2014)CrossRefGoogle Scholar
  55. 55.
    Khan, J., Can, C., Greenaway, A., Underwood, I.: A real-space interactive holographic display based on a large-aperture HOE. In: Proceeding of SPIE, vol. 8644, p. 86440M (2013)Google Scholar
  56. 56.
    Kim, M., Lee, J., Stuerzlinger, W., Wohn, K.: Holostation: augmented visualization and presentation. In: SIGGRAPH Asia 2016 Symposium on Visualization, pp. 12:1–12:9. ACM (2016)Google Scholar
  57. 57.
    Kiyokawa, K., Kurata, Y., Ohno, H.: An optical see-through display for mutual occlusion with a real-time stereovision system. Comput. Graph. 25(5), 765–779 (2001)CrossRefGoogle Scholar
  58. 58.
    Kjellin, A., Pettersson, L.W., Seipel, S., Lind, M.: Different levels of 3D: an evaluation of visualized discrete spatiotemporal data in space-time cubes. Inf. Vis. 9(2), 152–164 (2010)CrossRefGoogle Scholar
  59. 59.
    Kjellin, A., Pettersson, L.W., Seipel, S., Lind, M.: Evaluating 2D and 3D visualizations of spatiotemporal information. ACM Trans. Appl. Percept. (TAP) 7(3), 19:1–19:23 (2010)Google Scholar
  60. 60.
    Kwon, O.H., Muelder, C., Lee, K., Ma, K.L.: A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Trans. Vis. Comput. Graph. 22(7), 1802–1815 (2016)CrossRefGoogle Scholar
  61. 61.
    Kwon, O.H., Muelder, C., Lee, K., Ma, K.L.: Spherical layout and rendering methods for immersive graph visualization. In: 2015 IEEE Pacific Visualization Symposium (PacificVis), pp. 63–67 (2015)Google Scholar
  62. 62.
    Larson, K., van Dantzich, M., Czerwinski, M., Robertson, G.: Text in 3D: some legibility results. In: CHI 2000 Extended Abstracts on Human Factors in Computing Systems, pp. 145–146. ACM (2000)Google Scholar
  63. 63.
    Lee, J.M., MacLachlan, J., Wallace, W.A.: The effects of 3D imagery on managerial data interpretation. MIS Q. 10, 257–269 (1986)CrossRefGoogle Scholar
  64. 64.
    Lopez-Hernandez, R., Guilmaine, D., McGuffin, M.J., Barford, L.: A layer-oriented interface for visualizing time-series data from oscilloscopes. In: IEEE Pacific Visualization Symposium (PacificVis), pp. 41–48. IEEE (2010)Google Scholar
  65. 65.
    Mackinlay, J.D., Robertson, G.G., Card, S.K.: The perspective wall: detail and context smoothly integrated. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 173–176. ACM (1991)Google Scholar
  66. 66.
    Mauderer, M., Conte, S., Nacenta, M.A., Vishwanath, D.: Depth perception with gaze-contingent depth of field. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 217–226. ACM (2014)Google Scholar
  67. 67.
    Mauderer, M., Nacenta, M.A., Morrison, D.: Gazer: application for gaze-contingent viewing of images, April 2018. https://github.com/MichaelMauderer/Gazer. Accessed 16 June 2015. T12:05:34Z
  68. 68.
    McIntire, J.P., Liggett, K.K.: The (possible) utility of stereoscopic 3D displays for information visualization: the good, the bad, and the ugly. In: IEEE VIS International Workshop on 3DVis, pp. 1–9 (2014)Google Scholar
  69. 69.
    McIntire, J.P., Havig, P.R., Geiselman, E.E.: Stereoscopic 3D displays and human performance: a comprehensive review. Displays 35(1), 18–26 (2014)CrossRefGoogle Scholar
  70. 70.
    Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. In: Proceedings SPIE, vol. 2351, pp.–292 (1995)Google Scholar
  71. 71.
    Munzner, T.: Visualization Analysis and Design. CRC Press, Boca Raton (2014)CrossRefGoogle Scholar
  72. 72.
    Nacenta, M.A., Hancock, M., Gutwin, C., Carpendale, S.: The effects of changing projection geometry on perception of 3D objects on and around tabletops. ACM Trans. Comput.-Hum. Interact. (TOCHI) 23(2), 11:1–11:54 (2016)Google Scholar
  73. 73.
    Nacenta, M.A., et al.: E-conic: a perspective-aware interface for multi-display environments. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, pp. 279–288. ACM (2007)Google Scholar
  74. 74.
    Nelson, L., Cook, D., Cruz-Neira, C.: XGobi vs the C2: results of an experiment comparing data visualization in a 3-D immersive virtual reality environment with a 2-D workstation display. Comput. Stat. 14(1), 39–52 (1999)zbMATHGoogle Scholar
  75. 75.
    Ragan, E.D., Kopper, R., Schuchardt, P., Bowman, D.A.: Studying the effects of stereo, head tracking, and field of regard on a small-scale spatial judgment task. IEEE Trans. Vis. Comput. Graph. 19(5), 886–896 (2013)CrossRefGoogle Scholar
  76. 76.
    Rekimoto, J., Green, M.: The information cube: Using transparency in 3D information visualization. In: Proceedings of the Third Annual Workshop on Information Technologies & Systems (WITS 1993), pp. 125–132 (1993)Google Scholar
  77. 77.
    Robertson, G., Czerwinski, M., Larson, K., Robbins, D.C., Thiel, D., Van Dantzich, M.: Data mountain: using spatial memory for document management. In: Proceedings of the 11th Annual ACM Symposium on User Interface Software and Technology, pp. 153–162. ACM (1998)Google Scholar
  78. 78.
    Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: animated 3D visualizations of hierarchical information. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 189–194. ACM (1991)Google Scholar
  79. 79.
    Rogers, B., Graham, M.: Motion parallax as an independent cue for depth perception. Perception 8(2), 125–134 (1979)CrossRefGoogle Scholar
  80. 80.
    Schonlau, M., Peters, E.: Graph comprehension: an experiment in displaying data as bar charts, pie charts and tables with and without the gratuitous 3rd dimension. Social Science Research Network Working Paper Series, pp. 1–16 (2008)Google Scholar
  81. 81.
    Schowengerdt, B.T., Seibel, E.J.: True three-dimensional displays that allow viewers to dynamically shift accommodation, bringing objects displayed at different viewing distances into and out of focus. CyberPsychology Behav. 7(6), 610–620 (2004)CrossRefGoogle Scholar
  82. 82.
    Sedlmair, M., Munzner, T., Tory, M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans. Vis. Comput. Graph. 19(12), 2634–2643 (2013)CrossRefGoogle Scholar
  83. 83.
    Spence, R.: Information Visualization. Springer, Heidelberg (2001)Google Scholar
  84. 84.
    St. John, M., Cowen, M.B., Smallman, H.S., Oonk, H.M.: The use of 2D and 3D displays for shape-understanding versus relative-position tasks. Hum. Factors J. Hum. Factors Ergon. Soc. 43(1), 79–98 (2001)CrossRefGoogle Scholar
  85. 85.
    St. John, M., Smallman, H.S., Bank, T.E., Cowen, M.B.: Tactical routing using two-dimensional and three-dimensional views of terrain. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 45, pp. 1409–1413. SAGE Publications (2001)Google Scholar
  86. 86.
    Sun, H.J., Chan, G.S.W., Campos, J.L.: Active navigation and orientation-free spatial representations. Mem. Cogn. 32(1), 51–71 (2004)CrossRefGoogle Scholar
  87. 87.
    Tait, A.: Desktop virtual reality. In: IEE Colloquium on Using Virtual Worlds, pp. 5/1–5/5 (1992)Google Scholar
  88. 88.
    Todd, J.T., Norman, J.F.: The visual perception of 3-D shape from multiple cues: are observers capable of perceiving metric structure? Percept. Psychophys. 65(1), 31–47 (2003)CrossRefGoogle Scholar
  89. 89.
    Todd, J.T., Oomes, A.H., Koenderink, J.J., Kappers, A.M.: On the affine structure of perceptual space. Psychol. Sci. 12(3), 191–196 (2001)CrossRefGoogle Scholar
  90. 90.
    Tomilin, M.G.: Head-mounted displays. J. Opt. Technol. 66, 528–533 (1999)CrossRefGoogle Scholar
  91. 91.
    Tory, M., Kirkpatrick, A.E., Atkins, M.S., Möller, T.: Visualization task performance with 2D, 3D, and combination displays. IEEE Trans. Vis. Comput. Graph. 12(1), 2–13 (2006)CrossRefGoogle Scholar
  92. 92.
    Tory, M., Moller, T., Atkins, M.S., Kirkpatrick, A.E.: Combining 2D and 3D views for orientation and relative position tasks. In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems, pp. 73–80. ACM (2004)Google Scholar
  93. 93.
    Tory, M., Sprague, D.W., Wu, F., So, W.Y., Munzner, T.: Spatialization design: comparing points and landscapes. IEEE Trans. Vis. Comput. Graph. 13(6), 1262–1269 (2007)CrossRefGoogle Scholar
  94. 94.
    Tory, M., Swindells, C., Dreezer, R.: Comparing dot and landscape spatializations for visual memory differences. IEEE Trans. Vis. Comput. Graph. 15(6), 1033–1040 (2009)CrossRefGoogle Scholar
  95. 95.
    Van Orden, K., Broyles, J.: Visuospatial task performance as a function of two-and three-dimensional display presentation techniques. Displays 21(1), 17–24 (2000)CrossRefGoogle Scholar
  96. 96.
    Van Schooten, B.W., Van Dijk, E.M., Zudilova-Seinstra, E., Suinesiaputra, A., Reiber, J.H.: The effect of stereoscopy and motion cues on 3D interpretation task performance. In: Proceedings of the International Conference on Advanced Visual Interfaces, pp. 167–170. ACM (2010)Google Scholar
  97. 97.
    Vishwanath, D., Blaser, E.: Retinal blur and the perception of egocentric distance. J. Vis. 10(10), 26 (2010)CrossRefGoogle Scholar
  98. 98.
    Vishwanath, D.: Toward a new theory of stereopsis. Psychol. Rev. 121(2), 151–178 (2014)CrossRefGoogle Scholar
  99. 99.
    Vishwanath, D., Hibbard, P.B.: Seeing in 3D with just one eye: stereopsis without binocular vision. Psychol. Sci. 24(9), 1673–1685 (2013)CrossRefGoogle Scholar
  100. 100.
    Ware, C., Franck, G.: Viewing a graph in a virtual reality display is three times as good as a 2D diagram. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 182–183 (1994)Google Scholar
  101. 101.
    Ware, C.: Designing with a 2 1/2-D attitude. Inf. Des. J. 10(3), 258–258 (2001)Google Scholar
  102. 102.
    Ware, C.: Visual Thinking: for Design. Morgan Kaufmann, Burlington (2010)Google Scholar
  103. 103.
    Ware, C.: Information Visualization: Perception for Design, 3rd edn. Elsevier, New York (2013)Google Scholar
  104. 104.
    Ware, C., Arthur, K., Booth, K.S.: Fish tank virtual reality. In: Proceedings of the INTERACT and CHI Conference on Human Factors in Computing Systems, CHI 1993, pp. 37–42. ACM (1993)Google Scholar
  105. 105.
    Ware, C., Mitchell, P.: Reevaluating stereo and motion cues for visualizing graphs in three dimensions. In: Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization, pp. 51–58. ACM (2005)Google Scholar
  106. 106.
    Wegman, E.J., Symanzik, J.: Immersive projection technology for visual data mining. J. Comput. Graph. Stat. 11(1), 163–188 (2002)MathSciNetCrossRefGoogle Scholar
  107. 107.
    Westerman, S.J., Cribbin, T.: Mapping semantic information in virtual space: dimensions, variance and individual differences. Int. J. Hum. Comput. Stud. 53(5), 765–787 (2000)CrossRefGoogle Scholar
  108. 108.
    Wickens, C.D., Merwin, D.H., Lin, E.L.: Implications of graphics enhancements for the visualization of scientific data: dimensional integrality, stereopsis, motion, and mesh. Hum. Factors J. Hum. Factors Ergon. Soc. 36(1), 44–61 (1994)CrossRefGoogle Scholar
  109. 109.
    Yang, Y., Jenny, B., Dwyer, T., Marriott, K., Chen, H., Cordeil, M.: Maps and globes in virtual reality. Comput. Graph. Forum (2018)Google Scholar
  110. 110.
    Zaroff, C.M., Knutelska, M., Frumkes, T.E.: Variation in stereoacuity: normative description, fixation disparity, and the roles of aging and gender. Investig. Ophthalmol. Vis. Sci. 44(2), 891–900 (2003)CrossRefGoogle Scholar
  111. 111.
    Zhang, G., Kochunov, P., Hong, E., Carr, H., Chen, J.: Towards visual mega-analysis of voxel-based measurement in brain cohorts. In: Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, pp. 55–59. Eurographics Association (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kim Marriott
    • 1
  • Jian Chen
    • 2
  • Marcel Hlawatsch
    • 3
  • Takayuki Itoh
    • 4
  • Miguel A. Nacenta
    • 5
  • Guido Reina
    • 3
  • Wolfgang Stuerzlinger
    • 6
  1. 1.Monash UniversityMelbourneAustralia
  2. 2.The Ohio State UniversityColumbusUSA
  3. 3.University of Stuttgart (VISUS)StuttgartGermany
  4. 4.Ochanomizu UniversityTokyoJapan
  5. 5.University of St AndrewsSt AndrewsScotland
  6. 6.Simon Fraser UniversityBurnabyCanada

Personalised recommendations