Advertisement

Towards Large Scale Urban Traffic Reference Data: Smart Infrastructure in the Test Area Autonomous Driving Baden-Württemberg

  • Tobias Fleck
  • Karam Daaboul
  • Michael Weber
  • Philip Schörner
  • Marek Wehmer
  • Jens Doll
  • Stefan Orf
  • Nico Sußmann
  • Christian HubschneiderEmail author
  • Marc René Zofka
  • Florian Kuhnt
  • Ralf Kohlhaas
  • Ingmar Baumgart
  • Raoul Zöllner
  • J. Marius Zöllner
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 867)

Abstract

This paper presents the concept, realization and evaluation of a flexible and scalable setup for smart infrastructure at the example of the Test Area Autonomous Driving Baden-Württemberg.

In verification and validation of autonomous driving systems, there exists a gap between virtual validation and real road tests: Simulation provides an easy and efficient way to assess a system’s performance under a variety of environmental constraints, but is restricted to model assumptions and scenarios, which might ignore important aspects. Whereas expensive real road tests promise an unexpected environment for statistical evaluation of traffic scenarios, but lack of observability. Our setup for smart infrastructure is supposed to close the gap by tackling this issue by observing and providing reference data of traffic scenarios for application in different testing and evaluation settings.

We present the approach of implementing a distributed intelligent infrastructure capable of handling traffic light states, road topology and especially information about locally observed traffic participants. The data is provided online via Vehicle-to-X (V2X) communication for live testing and sensor range extension as well as offline via a backend for high-precision analysis and application of machine learning techniques. To obtain information about traffic participants, a camera based object tracking was realised. To cope with the high amount of information to be transmitted via V2X and to use the available bandwidth optimally, the standard for broadcasting vehicle information is modified by applying a form of data compression through prioritization.

The setup is initially evaluated at a large intersection in Karlsruhe, Germany.

Notes

Acknowledgement

This work was done within the project “Digitales Testfeld BW für automatisiertes und vernetztes Fahren”, referred to as “Testfeld Autonomes Fahren Baden-Württemberg”, funded by the Ministry of Transport Baden-Württemberg.

Under the direction of the FZI Research Center for Information Technology, a consortium of the City of Karlsruhe, the Karlsruhe Institute of Technology, Karlsruhe University of Applied Sciences, Heilbronn University of Applied Sciences, the Fraunhofer Institute for Optronics, System Technology and Image Evaluation IOSB and the City of Bruchsal and other associate partners is implementing the development of the Test Area.

References

  1. 1.
    ALP.Lab GmbH (Austrian Light Vehicle Proving Region for Automated Driving). http://www.alp-lab.at/. Accessed 15 May 2018
  2. 2.
    Federal Ministry of Transport and Digital Infrastructure: Digital Test Beds. http://www.bmvi.de/EN/Topics/Digital-Matters/Digital-Test-Beds/digital-test-beds.html. Accessed 15 May 2018
  3. 3.
    MCity Headquarters: MCity Test Facility. https://mcity.umich.edu/our-work/mcity-test-facility/. Accessed 20 May 2018
  4. 4.
    Toyota Research Institute: Opening in October - Toyota Research Institute Automated Vehicle Test Facility. http://www.tri.global/news/opening-in-october-toyota-research-institute-auto-2018-5-3. Accessed 20 May 2018
  5. 5.
    Aniss, H.: Overview of an ITS Project: SCOOP@F. In: Communication Technologies for Vehicles. Springer International Publishing (2016)Google Scholar
  6. 6.
    Bar-Shalom, Y., Willett, P., Tian, X.: Tracking and Data Fusion: A Handbook of Algorithms. YBS Publishing, Storrs (2011)Google Scholar
  7. 7.
    Barrios, C., Motai, Y.: Predicting Vehicle Trajectory. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar
  8. 8.
    Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Boston (1999)zbMATHGoogle Scholar
  9. 9.
    Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  10. 10.
    EN 302 637-2 V1.3.2; Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service. Standard, ETSI, Sophia Antipolis Cedex - FRANCE, November 2014Google Scholar
  11. 11.
    European Commission: Cooperative, connected and automated mobility (C-ITS). https://ec.europa.eu/transport/themes/its/c-its_en. Accessed 15 May 2018
  12. 12.
    Girshick, R.: Fast R-CNN. In: International Conference on Computer Vision (ICCV) (2015)Google Scholar
  13. 13.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  14. 14.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: International Conference on Computer Vision (ICCV) (2017)Google Scholar
  15. 15.
    Heidenreich, T., Spehr, J., Stiller, C.: LaneSLAM - simultaneous pose and lane estimation using maps with lane-level accuracy. In: International Conference on Intelligent Transportation Systems (ITSC) (2015)Google Scholar
  16. 16.
    Hübner, D., Riegelhuth, G.: A new system architecture for cooperative traffic centres - the SimTD field trial. In: 19th ITS World Congress (2012)Google Scholar
  17. 17.
    Hubschneider, C., Doll, J., Weber, M., Klemm, S., Kuhnt, F., Zöllner, J.M.: Integrating end-to-end learned steering into probabilistic autonomous driving. In: International Conference on Intelligent Transportation Systems (ITSC) (2017)Google Scholar
  18. 18.
    Jodoin, J.P., Bilodeau, G.A., Saunier, N.: Urban Tracker webpage. https://www.jpjodoin.com/urbantracker/dataset.html. Accessed 20 May 2018
  19. 19.
    Jodoin, J.P., Bilodeau, G.A., Saunier, N.: Urban tracker: multiple object tracking in urban mixed traffic. In: Computer Vision (WACV) (2014)Google Scholar
  20. 20.
    Kuhnt, F., Pfeiffer, M., Zimmer, P., Zimmerer, D., Gomer, J.M., Kaiser, V., Kohlhaas, R., Zöllner, J.M.: Robust environment perception for the audi autonomous driving cup. In: International Conference on Intelligent Transportation Systems (ITSC) (2016)Google Scholar
  21. 21.
    Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: European Conference on Computer Vision (ECCV) (2014) (2014)Google Scholar
  22. 22.
    Meyer, F., Kropfreiter, T., Williams, J.L., Lau, R.A., Hlawatsch, F., Braca, P., Win, M.Z.: Message passing algorithms for scalable multitarget tracking. In: Proceedings of the IEEE, vol. 106 (2018)CrossRefGoogle Scholar
  23. 23.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Computer Vision and Pattern Recognition (2016)Google Scholar
  24. 24.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Neural Information Processing Systems (NIPS) (2017)CrossRefGoogle Scholar
  25. 25.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (2016)Google Scholar
  26. 26.
    Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks (2014)Google Scholar
  27. 27.
    Sjoberg, K., Andres, P., Buburuzan, T., Brakemeier, A.: Cooperative intelligent transport systems in Europe: current deployment status and outlook. IEEE Veh. Technol. Mag. (2017)Google Scholar
  28. 28.
    Strigel, E., Meissner, D., Seeliger, F., Wilking, B., Dietmayer, K.: The Ko-PER Intersection Laserscanner and Video Dataset. In: International Conference on Intelligent Transportation Systems (ITSC) (2014)Google Scholar
  29. 29.
    Tomatis, A., Miche, M., Haeusler, F., Lenardi, M., Bohnert, T.M., Radusch, I.: A test architecture for V-2-X cooperative systems field operational tests. In: International Conference on Intelligent Transport Systems Telecommunications (ITST) (2009)Google Scholar
  30. 30.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. (2000)Google Scholar
  31. 31.
    Zofka, M.R., Kuhnt, F., Kohlhaas, R., Zollner, J.M.: Simulation framework for the development of autonomous small scale vehicles for autonomous robots (SIMPAR) (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tobias Fleck
    • 1
  • Karam Daaboul
    • 1
  • Michael Weber
    • 1
  • Philip Schörner
    • 1
  • Marek Wehmer
    • 1
  • Jens Doll
    • 1
  • Stefan Orf
    • 1
  • Nico Sußmann
    • 2
  • Christian Hubschneider
    • 1
    Email author
  • Marc René Zofka
    • 1
  • Florian Kuhnt
    • 1
  • Ralf Kohlhaas
    • 1
  • Ingmar Baumgart
    • 1
  • Raoul Zöllner
    • 2
  • J. Marius Zöllner
    • 1
  1. 1.FZI Research Center for Information TechnologyKarlsruheGermany
  2. 2.Heilbronn University of Applied SciencesHeilbronnGermany

Personalised recommendations