Cluster ICP: Towards Sparse to Dense Registration

  • Mohamed Lamine Tazir
  • Tawsif Gokhool
  • Paul Checchin
  • Laurent Malaterre
  • Laurent Trassoudaine
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 867)


Normal segmentation of geometric range data has been a common practice integrated in the building blocks of point cloud registration. Most well-known point to plane and plane to plane state-of-the-art registration techniques make use of normal features to ensure a better alignment. However, the latter is influenced by noise, pattern scanning and difference in densities. Consequently, the resulting normals in both a source point cloud and a target point cloud will not be perfectly adapted, thereby influencing the alignment process, due to weak inter surface correspondences. In this paper, a novel approach is introduced, exploiting normals differently, by clustering points of the same surface into one topological pattern and replacing all the points held by this model by one representative point. These particular points are then used for the association step of registration instead of directly injecting all the points with their extracted normals. In our work, normals are only used to distinguish different local surfaces and are ignored for later stages of point cloud alignment. This approach enables us to overcome two major shortcomings; the problem of correspondences in different point cloud densities, noise inherent in sensors leading to noisy normals. In so doing, improvement on the convergence domain between two reference frames tethered to two dissimilar depth sensors is considerably improved leading to robust localization. Moreover, our approach increases the precision as well as the computation time of the alignment since matching is performed on a reduced set of points. Finally, these claims are backed up by experimental proofs on real data to demonstrate the robustness and the efficiency of the proposed approach.


Registration Dense to sparse Selection Clustering Matching 


  1. 1.
    Agamennoni, G., Fontana, S., Siegwart, R.Y., Sorrenti, D.G.: Point clouds registration with probabilistic data association. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4092–4098 (2016)Google Scholar
  2. 2.
    Aldoma, A., Vincze, M., Blodow, N., Gossow, D., Gedikli, S., Rusu, R.B., Bradski, G.: CAD-model recognition and 6DOF pose estimation using 3D cues. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 585–592. IEEE (2011)Google Scholar
  3. 3.
    Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 1027–1035. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2007)Google Scholar
  4. 4.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  5. 5.
    Blanco, J.L.: A tutorial on se(3) transformation parameterizations and on-manifold optimization. Technical report, University of Malaga (2010)Google Scholar
  6. 6.
    Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.: Past, present, and future of simultaneous localization and mapping: towards the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)CrossRefGoogle Scholar
  7. 7.
    Caselitz, T., Steder, B., Ruhnke, M., Burgard, W.: Monocular camera localization in 3D LiDAR maps. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–6 (2016)Google Scholar
  8. 8.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: IEEE International Conference on Robotics and Automation, pp. 2724–2729 (1991)Google Scholar
  9. 9.
    Costa, C.M., Sobreira, H.M., Sousa, A.J., Veiga, G.M.: Robust 3/6 DoF self-localization system with selective map update for mobile robot platforms. Robot. Auton. Syst. 76(C), 113–140 (2016)CrossRefGoogle Scholar
  10. 10.
    Das, A., Diu, M., Mathew, N., Scharfenberger, C., Servos, J., Wong, A., Zelek, J.S., Clausi, D.A., Waslander, S.L.: Mapping, planning, and sample detection strategies for autonomous exploration. J. Field Robot. 31(1), 75–106 (2014)CrossRefGoogle Scholar
  11. 11.
    Feng, Y., Schlichting, A., Brenner, C.: 3D feature point extraction from LiDAR data using a neural network. In: International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences-ISPRS Archives 41, vol. 41, pp. 563–569 (2016)CrossRefGoogle Scholar
  12. 12.
    Hänsch, R., Weber, T., Hellwich, O.: Comparison of 3D interest point detectors and descriptors for point cloud fusion. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-3, pp. 57–64 (2014)CrossRefGoogle Scholar
  13. 13.
    Holz, D., Ichim, A.E., Tombari, F., Rusu, R.B., Behnke, S.: Registration with the point cloud library PCL. IEEE Robot. Autom. Mag. 22(4), 1–13 (2015)CrossRefGoogle Scholar
  14. 14.
    Jolliffe, I.T.: Principal Component Analysis for Special Types of Data, pp. 199–222. Springer, New York (1986)Google Scholar
  15. 15.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  16. 16.
    Ma, Y., Soatto, S., Košecká, J., Sastry, S.S.: An Invitation to 3-D Vision. Springer, Dordrecht (2004)CrossRefGoogle Scholar
  17. 17.
    Maddern, W., Newman, P.: Real-time probabilistic fusion of sparse 3d lidar and dense stereo. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2181–2188. IEEE (2016)Google Scholar
  18. 18.
    Magnusson, M., Lilienthal, A., Duckett, T.: Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 24(10), 803–827 (2007)CrossRefGoogle Scholar
  19. 19.
    Marani, R., Reno, V., Nitti, M., D’Orazio, T., Stella, E.: A modified iterative closest point algorithm for 3D point cloud registration. Comput. Aided Civ. Infrastruct. Eng. 31(7), 515–534 (2016)CrossRefGoogle Scholar
  20. 20.
    Nieto, J., Bailey, T., Nebot, E.: Scan-SLAM: combining EKF-SLAM and scan correlation. In: Springer Tracts in Advanced Robotics, vol. 25, pp. 167–178 (2006)Google Scholar
  21. 21.
    Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Robot. 4(1–104), 1–104 (2015)Google Scholar
  22. 22.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, pp. 145–152 (2001)Google Scholar
  23. 23.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast Point Feature Histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009)Google Scholar
  24. 24.
    Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2155–2162. IEEE (2010)Google Scholar
  25. 25.
    Rusu, R.B., Cousins, S.: 3D is here: point cloud library. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011).
  26. 26.
    Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Systems (2009)Google Scholar
  27. 27.
    Serafin, J., Grisetti, G.: NICP: dense normal based point cloud registration. In: IEEE International Conference on Intelligent Robots and Systems, vol. 2015, pp. 742–749 (2015)Google Scholar
  28. 28.
    Serafin, J., Olson, E., Grisetti, G.: Fast and robust 3D feature extraction from sparse point clouds. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4105–4112 (2016)Google Scholar
  29. 29.
    Tazir, M.L., Checchin, P., Trassoudaine, L.: Color-based 3D point cloud reduction. In: the 14th International Conference on Control, Automation, Robotics and Vision, ICARCV, pp. 1–7 (2016)Google Scholar
  30. 30.
    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Velas, M., Spanel, M., Herout, A.: Collar line segments for fast odometry estimation from velodyne point clouds. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4486–4495 (2016)Google Scholar
  32. 32.
    Wiemann, T., Mrozinski, M., Feldschnieders, D., Lingemann, K., Hertzberg, J.: Data handling in large-scale surface reconstruction. In: 13th International Conference on Intelligent Autonomous Systems, pp. 1–12 (2014)Google Scholar
  33. 33.
    Wolcott, R.W., Eustice, R.M.: Visual localization within LIDAR maps for automated urban driving. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 176–183. IEEE (2014)Google Scholar
  34. 34.
    Yang, B., Dong, Z., Liang, F., Liu, Y.: Automatic registration of large-scale urban scene point clouds based on semantic feature points. ISPRS J. Photogramm. Remote. Sens. 113, 43–58 (2016)CrossRefGoogle Scholar
  35. 35.
    Yang, J., Li, H., Jia, Y.: Go-ICP: solving 3d registration efficiently and globally optimally. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1457–1464 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed Lamine Tazir
    • 1
  • Tawsif Gokhool
    • 2
  • Paul Checchin
    • 1
  • Laurent Malaterre
    • 1
  • Laurent Trassoudaine
    • 1
  1. 1.Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut PascalClermont-FerrandFrance
  2. 2.Université de Picardie Jules VernesAmiensFrance

Personalised recommendations