Advertisement

Simulation of the SynTouch BioTac Sensor

  • Philipp Ruppel
  • Yannick Jonetzko
  • Michael Görner
  • Norman HendrichEmail author
  • Jianwei Zhang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 867)

Abstract

We present a data-driven approach to simulate the BioTac tactile fingertip sensor within physics engines. The behavior of the sensor is first captured in an experimental setup that records positions and external forces of contacts as well as the sensor output. This data is then used to fit a non-linear model that maps force-annotated mesh collisions of a simulator to sensor responses.

We discuss two deep network architectures that reproduce the BioTac data with high accuracy and demonstrate the simulation of simple grasps with the Shadow Dexterous Hand and five BioTac sensors. We present an open source plug-in for the simulator Gazebo and release the captured dataset alongside this paper.

Keywords

Tactile sensing Physics simulation Dexterous manipulation Deep neural networks 

References

  1. 1.
    Fishel, J.A., Santos, V.J., Loeb, G.E.: A robust micro-vibration sensor for biomimetic fingertips. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 659–663 (2008).  https://doi.org/10.1109/BIOROB.2008.4762917
  2. 2.
    Wettels, N.B.: Biomimetic tactile sensor for object identification and grasp control. University of Southern California (2011)Google Scholar
  3. 3.
    Fishel, J.A.: Design and use of a biomimetic tactile microvibration sensor with human-like sensitivity and its application in texture discrimination using Bayesian exploration. University of Southern California (2012)Google Scholar
  4. 4.
    Loeb, G.E.: Estimating point of contact, force and torque in a biomimetic tactile sensor with deformable skin (2013). https://www.syntouchinc.com/wp-content/uploads/2016/12/2013_Lin_Analytical-1.pdf
  5. 5.
    Chu, V., et al.: Robotic learning of haptic adjectives through physical interaction. Rob. Auton. Syst. 63, 279–292 (2015).  https://doi.org/10.1016/j.robot.2014.09.021CrossRefGoogle Scholar
  6. 6.
    Fishel, J.A., Lin, G., Matulevich, B., Loeb, G.: BioTac product manual. SynTouch LLC, V20 edn. (2015). https://www.syntouchinc.com/wp-content/uploads/2017/01/BioTac_Product_Manual.pdf
  7. 7.
    Shadow Robot Dextrous Hand. https://www.shadowrobot.com/
  8. 8.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Proceedings, vol. 3, pp. 2149–2154. IEEE (2004).  https://doi.org/10.1109/iros.2004.1389727
  9. 9.
    Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng., A. Y., ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  10. 10.
    Open Dynamics Engine. http://www.ode.org/
  11. 11.
    Bullet Physics Library. http://bulletphysics.org/wordpress/
  12. 12.
    Simbody Multibody Physics API. https://simtk.org/projects/simbody/
  13. 13.
    Dynamic Animation and Robotics Toolkit. http://dartsim.github.io/
  14. 14.
    Cyberbotics Inc., Webots robot simulator. https://www.cyberbotics.com/
  15. 15.
    Coppelia Robotics, V-REP Virtual Robot Experimentation Platform. http://www.coppeliarobotics.com/
  16. 16.
    Cutkosky, M.R.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Rob. Autom. 5(3), 269–279 (1989).  https://doi.org/10.1109/70.34763CrossRefGoogle Scholar
  17. 17.
    Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2000, vol. 1, pp. 348–353. IEEE (2000).  https://doi.org/10.1109/ROBOT.2000.844081
  18. 18.
    Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Rob. Autom. Mag. 11(4), 110–122 (2004).  https://doi.org/10.1109/MRA.2004.1371616CrossRefGoogle Scholar
  19. 19.
    Ciocarlie, M.T., Allen, P.K.: Hand posture subspaces for dexterous robotic grasping. Int. J. Rob. Res. 28(7), 851–867 (2009).  https://doi.org/10.1177/0278364909105606CrossRefGoogle Scholar
  20. 20.
    Goldfeder, C., Ciocarlie, M., Dang, H., Allen, P.K.: The columbia grasp database. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 1710–1716. IEEE (2009).  https://doi.org/10.1109/ROBOT.2009.5152709
  21. 21.
    Taylor, J.R., Drumwright, E.M., Hsu, J.: Analysis of grasping failures in multi-rigid body simulations. In: IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), pp. 295–301. IEEE (2016).  https://doi.org/10.1109/SIMPAR.2016.7862410
  22. 22.
    Scharfe, H., Hendrich, N., Zhang, J.: Hybrid physics simulation of multi-fingered hands for dexterous in-hand manipulation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3777–3783. IEEE (2012).  https://doi.org/10.1109/ICRA.2012.6225156
  23. 23.
    León, B., et al.: OpenGRASP: a toolkit for robot grasping simulation. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 109–120. Springer (2010).  https://doi.org/10.1007/978-3-642-17319-6_13CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Diankov, R., Kuffner, J.: OpenRAVE: a planning architecture for autonomous robotics. Robotics Institute, Pittsburgh, PA, Technical report. CMU-RI-TR-08-34 79 (2008)Google Scholar
  26. 26.
    Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing-from humans to humanoids. IEEE Trans. Rob. 26(1), 1–20 (2010).  https://doi.org/10.1109/TRO.2009.2033627CrossRefGoogle Scholar
  27. 27.
    Yousef, H., Boukallel, M., Althoefer, K.: Tactile sensing for dexterous in-hand manipulation in robotics-a review. Sens. Actuators A Phys. 167(2), 171–187 (2011).  https://doi.org/10.1016/j.sna.2011.02.038CrossRefGoogle Scholar
  28. 28.
    Message and service publishers for interfacing with Gazebo through ROS. http://wiki.ros.org/gazebo_ros
  29. 29.
    Optoforce Ltd., 3D Force Sensor. https://optoforce.com/3d-force-sensor-omd
  30. 30.
    Grazioso, S., Sonneville, V., Di Gironimo, G., Bauchau, O., Siciliano, B.: A nonlinear finite element formalism for modelling flexible and soft manipulators. In: IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), pp. 185–190. IEEE (2016).  https://doi.org/10.1109/SIMPAR.2016.7862394
  31. 31.
  32. 32.
    Comsol Multiphysics suite. https://www.comsol.com/multiphysics
  33. 33.
    ATI Industrial Automation Inc.: F/T Sensor Nano17. http://www.ati-ia.com/products/ft/ft_models.aspx?id=Nano17
  34. 34.
    Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3400–3407. IEEE (2011).  https://doi.org/10.1109/ICRA.2011.5979561
  35. 35.
    Ciobanu, V., Popescu, D, Petrescu, A.: Point of contact location and normal force estimation using biomimetical tactile sensors. In: Eighth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 373–378. IEEE (2014).  https://doi.org/10.1109/CISIS.2014.52

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Philipp Ruppel
    • 1
  • Yannick Jonetzko
    • 1
  • Michael Görner
    • 1
  • Norman Hendrich
    • 1
    Email author
  • Jianwei Zhang
    • 1
  1. 1.Informatics DepartmentUniversity of HamburgHamburgGermany

Personalised recommendations