Advertisement

Modular Robot that Modeled Cell Membrane Dynamics of a Cellular Slime Mold

  • Ryusuke Fuse
  • Masahiro ShimizuEmail author
  • Shuhei Ikemoto
  • Koh Hosoda
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 867)

Abstract

Understanding of the design principles for implementing adaptive functions with respect to engineering currently remains stalled in the conceptual level. However, living organisms exhibit great adaptive function by skillfully relating shape and function in a spatio-temporal manner. In this study, we focus on amoeboid organisms because these organisms have a variable morphology that relates shape and function. Amoeboid organisms in the natural world (i.e., cellular slime molds) locomote through changing the cell membrane shape by inducing the internal protoplasmic streaming. Based on this mechanism, we developed modular robots that modeled the cell membrane dynamics of a cellar slime mold.

Notes

Acknowledgment

This work was supported partially by Grant-in-Aid for Scientific Research on 15H02763, and 17K19978 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-tran: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)CrossRefGoogle Scholar
  2. 2.
    Miyashita, S., Kessler, M., Lungarella, M.: How morphology affects self-assembly in a stochastic modular robot. In: IEEE International Conference on Robotics and Automation. ICRA 2008, pp. 3533–3538. IEEE (2008)Google Scholar
  3. 3.
    Firouzeh, A., Sun, Y., Lee, H., Paik, J.: Sensor and actuator integrated low-profile robotic origami. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4937–4944. IEEE (2013)Google Scholar
  4. 4.
    Zhakypov, Z., Falahi, M., Shah, M., Paik, J.: The design and control of the multi-modal locomotion origami robot, tribot. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4349–4355. IEEE (2015)Google Scholar
  5. 5.
    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)CrossRefGoogle Scholar
  6. 6.
    Umedachi, T., Vikas, V., Trimmer, B.A.: Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. Bioinspiration biomimetics 11(2), 025001 (2016)CrossRefGoogle Scholar
  7. 7.
    Nishimura, S.I., Ueda, M., Sasai, M.: Cortical factor feedback model for cellular locomotion and cytofission. PLoS Comput. Biol. 5(3), e1000310 (2009)CrossRefGoogle Scholar
  8. 8.
    Fukuda, T., Buss, M., Hosokai, H., Kawauchi, Y.: Cell structured robotic system cebot: control, planning and communication methods. Robot. Auton. Syst. 7(2), 239–248 (1991)CrossRefGoogle Scholar
  9. 9.
    Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298. IEEE (2012)Google Scholar
  10. 10.
    Shimizu, M., Ishiguro, A.: Amoeboid locomotion having high fluidity by a modular robot. IJUC 6(2), 145–161 (2010)Google Scholar
  11. 11.
    Umedachi, T., Ito, K., Ishiguro, A.: Soft-bodied amoeba-inspired robot that switches between qualitatively different behaviors with decentralized stiffness control. Adapt. Behav. 23(2), 97–108 (2015)CrossRefGoogle Scholar
  12. 12.
    Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4), 453–465 (2003)CrossRefGoogle Scholar
  13. 13.
    Bray, D.: Cell movements: from molecules to motility. Garland Science (2001)Google Scholar
  14. 14.
    Shibata, T., Nishikawa, M., Matsuoka, S., Ueda, M.: Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis. J. Cell Sci. 125(21), 5138–5150 (2012)CrossRefGoogle Scholar
  15. 15.
    Shibata, T., Nishikawa, M., Matsuoka, S., Ueda, M.: Intracellular encoding of spatiotemporal guidance cues in a self-organizing signaling system for chemotaxis in dictyostelium cells. Biophys. J. 105(9), 2199–2209 (2013)CrossRefGoogle Scholar
  16. 16.
    Asano, Y., Nagasaki, A., Uyeda, T.Q.: Correlated waves of actin filaments and pip3 in dictyostelium cells. Cell Motil. Cytoskelet. 65(12), 923 (2008)CrossRefGoogle Scholar
  17. 17.
    Chen, C.-L., Wang, Y., Sesaki, H., Iijima, M.: Myosin i links pip3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci. Signaling 5(209), ra10 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ryusuke Fuse
    • 1
  • Masahiro Shimizu
    • 1
    Email author
  • Shuhei Ikemoto
    • 1
  • Koh Hosoda
    • 1
  1. 1.Osaka UniversitySuitaJapan

Personalised recommendations