Advertisement

A Viterbi-like Approach for Trajectory Planning with Different Maneuvers

  • Jörg RothEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 867)

Abstract

The task of a trajectory planning tries to find a sequence of driving commands that connects two configurations, whereas we have to consider nonholonomic constraints, obstacles and driving costs. In this paper, we present a new approach that supports arbitrary primitive trajectories, cost functions and constraints. The vehicle’s driving capabilities are modeled by a list of supported maneuvers. For maneuvers there exist equations that map configurations to driving commands. From all possible maneuver sequences that connect start and target, we compute the optimum with a Viterbi-like approach.

References

  1. 1.
    Barraquand, L., Langlois, B., Latombe, J.-C.: Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man. Cybern. 22(2), 224–241 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boissonnat, J.D., Cerezo, A., Leblond, J.: A note on shortest paths in the plane subject to a constraint on the derivative of the curvature, Research Report 2160 Inst. Nat. de Recherche en Informatique et an Automatique (1994)Google Scholar
  3. 3.
    Bui, X.N., Boissonnat, J.D., Soueres, P., Laumond, J.P.: Shortest path synthesis for dubins nonholonomic robot. In: IEEE Conference on Robotics and Automation, San Diego, CA, pp. 2–7 (1994)Google Scholar
  4. 4.
    Delingett, H., Hebert, M., Ikeuchi, K.: Trajectory generation with curvature constraint based on energy minimization. In: Proceedings of the International Workshop on Intelligent Robots and Systems IROS91, Osaka, Japan (1991)Google Scholar
  5. 5.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gu, T., Dolan, J.M.: On-road motion planning for autonomous vehicles. In: ICIRA 2012, pp. 588–597. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Karaman, S., Walter, M.R., Perez, A., Frazzoli, E., Teller, S.: Anytime motion planning using the RRT*. In: IEEE International Conference on Robotics and Automation (ICRA), May 9–13, 2011, Shanghai, China, pp. 4307–4313 (2011)Google Scholar
  8. 8.
    Laumond, J.-P., Jacobs, P.E., Taïx, M., Murray, R.M.: A motion planner for nonholonomic mobile robots. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994)CrossRefGoogle Scholar
  9. 9.
    LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning, TR 98-11, Computer Science Dept., Iowa State University (1998)Google Scholar
  10. 10.
    LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)CrossRefGoogle Scholar
  11. 11.
    LaValle, S.M., Branicky, M.S., Lindemann, S.R.: Classical grid search and probabilistic roadmaps. Int. J. Robot. Res. 23(7–8), 673–692 (2004)CrossRefGoogle Scholar
  12. 12.
    Liang, T.-C., Liu, J.-S., Hung, G.-T., Chang, Y.-Z.: Practical and flexible path planning for car-like mobile robot using maximal-curvature cubic spiral. Robot. Auton. Syst. 52, 312–335 (2005)CrossRefGoogle Scholar
  13. 13.
    Mukadam, M., Yan, X., Boots, B.: Gaussian process motion planning. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 16–21, 2016, pp. 9–15 (2016)Google Scholar
  14. 14.
    Muñoz, V.F., Ollero, A.: Smooth trajectory planning method for mobile robots. In: Proceedings of the Congress on Computer Engineering in System Applications, Lille, France, pp. 700–705 (1995)Google Scholar
  15. 15.
    Nelson, W.L.: Continuous curvature paths for autonomous vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, pp. 1260–1264 (19890Google Scholar
  16. 16.
    Pitvoraiko, M., Kelly, A.: Efficient constrained path planning via search in state lattices. In: International Symposium on Artificial Intelligence, Robotics, and Automation in Space (2005)Google Scholar
  17. 17.
    Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and back-wards. Pacific J. Math. 145, 367–393 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Roth, J.: A novel development paradigm for event-based applications. In: International Conference on Innovations for Community Services (I4CS), Nuremberg, Germany, July 8–10, 2015, IEEE xplore, pp. 69–75 (2015)Google Scholar
  19. 19.
    Scheuer, A., Fraichard, T.: Continuous-curvature path planning for car-like vehicles. In: IEEE RSJ International Conference on Intelligent Robots and Systems, 7–11 September, Grenoble, France (1997)Google Scholar
  20. 20.
    Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum de-coding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)CrossRefGoogle Scholar
  21. 21.
    Zucker, M., Ratliff, N., Dragan, A., Pivtoraiko, M., Klingensmith, M., Dellin, C., Bagnell, J.A., Srinivasa, S.: CHOMP: Covariant Hamiltonian Optimization for Motion Planning. Int. J. Robot. Res. 32, 1164–1193 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceNuremberg Institute of TechnologyNurembergGermany

Personalised recommendations