Segmentation of the Aorta Using Active Contours with Histogram-Based Descriptors

  • Miguel Alemán-FloresEmail author
  • Daniel Santana-Cedrés
  • Luis Alvarez
  • Agustín Trujillo
  • Luis Gómez
  • Pablo G. Tahoces
  • José M. Carreira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11043)


This work presents an automatic method to segment the aortic lumen in computed tomography scans by combining an ellipse-based structure of the artery and an active contour model. The general shape of the aorta is first estimated by adapting the contour of its cross-sections to ellipses oriented in the direction orthogonal to the course of the vessel. From this set of ellipses, an initial segmentation is computed, which is used as starting approximation for the active contour technique. Apart from the traditional attraction and regularization terms of the active contours, an additional term is included to make the contour evolve according to the likelihood of a given intensity to be inside the aorta or in the surrounding tissues. With this technique, it is possible to adapt the boundary of the initial segmentation by considering not only the most significant edges, but also the distribution of the intensities inside and surrounding the aortic lumen.


Aorta Segmentation Active contours CT 



This research has partially been supported by the MINECO projects references TIN2016-76373-P (AEI/FEDER, UE) and MTM2016-75339-P (AEI/FEDER, UE) (Ministerio de Economía y Competitividad, Spain).


  1. 1.
    Alvarez, L., Cuenca, C., Díaz, J., González, E.: Level set regularization using geometric flows. SIAM J. Imaging Sci. 11(2), 1493–1523 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alvarez, L.: Robust detection of circles in the vessel contours and application to local probability density estimation. In: Cardoso, M.J., et al. (eds.) LABELS/CVII/STENT -2017. LNCS, vol. 10552, pp. 3–11. Springer, Cham (2017). Scholar
  3. 3.
    Alvarez, L., et al.: Tracking the aortic lumen geometry by optimizing the 3D orientation of its cross-sections. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 174–181. Springer, Cham (2017). Scholar
  4. 4.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefGoogle Scholar
  5. 5.
    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)CrossRefGoogle Scholar
  6. 6.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  7. 7.
    Manniesing, R., Niessen, W.: Local speed functions in level set based vessel segmentation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 475–482. Springer, Heidelberg (2004). Scholar
  8. 8.
    Xie, Y., Padgett, J., Biancardi, A.M., Reeves, A.P.: Automated aorta segmentation in low-dose chest CT images. Int. J. Comput. Assist. Radiol. Surg. 9(2), 211–219 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Miguel Alemán-Flores
    • 1
    Email author
  • Daniel Santana-Cedrés
    • 1
  • Luis Alvarez
    • 1
  • Agustín Trujillo
    • 1
  • Luis Gómez
    • 2
  • Pablo G. Tahoces
    • 3
  • José M. Carreira
    • 4
  1. 1.CTIM, DISUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.CTIM, DIEAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  3. 3.Department of Electronics and Computer ScienceUniversidad de SantiagoSantiagoSpain
  4. 4.Complejo Hospitalario Universitario de Santiago (CHUS)SantiagoSpain

Personalised recommendations