Advertisement

Automated Quantification of Blood Flow Velocity from Time-Resolved CT Angiography

  • Pieter Thomas BoonenEmail author
  • Nico Buls
  • Gert Van Gompel
  • Yannick De Brucker
  • Dimitri Aerden
  • Johan De Mey
  • Jef Vandemeulebroucke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11043)

Abstract

Contrast-enhanced computed tomography angiography (CE-CTA) provides valuable, non-invasive assessment of lower extremity peripheral arterial disease (PAD). The advent of wide beam CT scanners has enabled multiple CT acquisitions over the same structure at a high frame rate, facilitating time-resolved CTA acquisitions. In this study, we investigate the technical feasibility of automatically quantifying the bolus arrival time and blood velocity in the arteries below the knee from time-resolved CTA. Our approach is based on arterial segmentation and local estimation of the bolus arrival time. The results are compared to values obtained through manual reading of the datasets and show good agreement. Based on a small patient study, we explore initial utility of these quantitative measures for the diagnosis of lower extremity PAD.

Keywords

Peripheral arterial disease Time-resolved CTA Blood velocity Lower extremities Artery segmentation 

References

  1. 1.
    Barfett, J.J., Fierstra, J., Mikulis, D.J., Krings, T.: Blood velocity calculated from volumetric dynamic computed tomography angiography. Investig. Radiol. 45, 778–781 (2010)CrossRefGoogle Scholar
  2. 2.
    Barfett, J.J., et al.: Intra-vascular blood velocity and volumetric flow rate calculated from dynamic 4D CT angiography using a time of flight technique. Int. J. Cardiovasc. Imaging 30, 1383–1392 (2014)CrossRefGoogle Scholar
  3. 3.
    Chan, D., Anderson, M.E., Dolmatch, B.L.: Imaging evaluation of lower extremity infrainguinal disease: role of the noninvasive vascular laboratory, computed tomography angiography, and magnetic resonance angiography. Tech. Vasc. Interv. Radiol. 13(1), 11–22 (2010). Infrainguinal InterventionsCrossRefGoogle Scholar
  4. 4.
    Cimminiello, C., et al.: The PANDORA study: peripheral arterial disease in patients with non-high cardiovascular risk. Intern. Emerg. Med. 6(6), 509–519 (2011)CrossRefGoogle Scholar
  5. 5.
    Conte, M.S., et al.: Society for vascular surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J. Vasc. Surg. 61, 2S–41S (2015)CrossRefGoogle Scholar
  6. 6.
    Fronek, A., Coel, M., Berstein, E.F.: Quantitative ultrasonographic studies of lower extremity flow velocities in health and disease. Circulation 53(6), 957–960 (1976)CrossRefGoogle Scholar
  7. 7.
    Harloff, A., Zech, T., Wegent, F., Strecker, C., Weiller, C., Markl, M.: Comparison of blood flow velocity quantification by 4D flow MR Imaging with ultrasound at the carotid bifurcation. Am. J. Neuroradiol. 34(7), 1407–1413 (2013)CrossRefGoogle Scholar
  8. 8.
    Johnson, H.J., McCormick, M.M., Ibanez, L., the Insight Software Consortium: The ITK Software Guide Book 1: Introduction and Development Guidelines (2016)Google Scholar
  9. 9.
    Markl, M., Wallis, W., Strecker, C., Gladston, B.P., Vach, W., Harlof, A.: Analysis of pulse wave velocity in the thoracic aorta by flow sensitive four dimensional MRI: reproducibility and correlation with characteristics in patients with aortic atherosclerosis. J. Magn. Reson. Imaging 5, 1162–1168 (2012)CrossRefGoogle Scholar
  10. 10.
    Mascarenhas, J.V., Albayati, M.A., Shearman, C.P., Jude, E.B.: Peripheral arterial disease. Endocrinol. Metab. Ism Clin. N. Am. 43(1), 149–166 (2014). Diabetes Mellitus: Associated ConditionsCrossRefGoogle Scholar
  11. 11.
    Met, R., Bipat, S., Legemate, D.A., Reeker, J.A., Koelemay, M.J.W.: Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA 301(4), 415–424 (2009)CrossRefGoogle Scholar
  12. 12.
    Mouser, J.G., et al.: Blood flow restriction and cuff width: effect on blood flow in the legs (2018)CrossRefGoogle Scholar
  13. 13.
    Norgren, L., Hiatt, W., Dormandy, J., Nehler, M., Harris, K., Fowkes, F.: Inter-society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg. 45, S5–67 (2007)CrossRefGoogle Scholar
  14. 14.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)CrossRefGoogle Scholar
  15. 15.
    Prevrhal, S., Forsythe, C.H., Harnish, R.J., Saeed, M., Yeh, B.M.: CT angiographic measurement of vascular blood flow velocity by using projection data. Radiology 261, 923–929 (2011)CrossRefGoogle Scholar
  16. 16.
    Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  17. 17.
    Sommer, W.H., et al.: Diagnostic value of time-resolved CT angiography for the lower leg. Eur. Radiol. 20, 2876–2881 (2010)CrossRefGoogle Scholar
  18. 18.
    Staring, M., Klein, S.: Itk::transforms supporting spatial derivatives, September 2010Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Pieter Thomas Boonen
    • 1
    • 2
    • 3
    Email author
  • Nico Buls
    • 2
  • Gert Van Gompel
    • 2
  • Yannick De Brucker
    • 2
  • Dimitri Aerden
    • 4
  • Johan De Mey
    • 2
  • Jef Vandemeulebroucke
    • 1
    • 3
  1. 1.Department of Electronics and Informatics (ETRO)Vrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.Department of RadiologyVrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.imecLeuvenBelgium
  4. 4.Department of Vascular SurgeryVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations