Advertisement

Mössbauer Spectroscopy of Magnetoelectric Perovskite Oxides

  • Paweł Stoch
  • Agata Stoch
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)

Abstract

Magnetoelectrics have been one of the most widely studied materials in recent years. They are very interesting from the fundamental point of view due to joining magnetic and electric orderings in the same phase, which tends to exclude each other. On the other hand, the orderings are coupled each other what makes them promising material to be applied in many electronic devices. This phenomenon is strongly related to the structure and its changes which can be tested by Mössbauer spectroscopy. In the chapter, we look closer to this technique in application to magnetoelectric perovskite solid solutions of BiFeO3–Pb(Fe0.5Nb0.5)O3. The possibility of confirmation of random cation distribution, magnetic ordering temperature, and iron magnetic properties will be presented and discussed. The presented experimental hyperfine interaction parameters will be compared to those theoretically calculated using ab initio methods.

References

  1. 1.
    Scott JF (2007) Data storage: multiferroic memories. Nat Mater 6:256–257CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltd., LondonCrossRefGoogle Scholar
  3. 3.
    Dickson DPE, Berry FJ (1986) Mössbauer spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Gütlich P, Bill E, Trautwein AX (2011) Basic physical concepts. Mössbauer spectroscopy and transition metal chemistry: fundamentals and applications. Springer, Heidelberg, pp 7–24CrossRefGoogle Scholar
  5. 5.
    Gonser U (1975) From a strange effect to Mössbauer spectroscopy. In: Gonser U (ed) Mössbauer spectroscopy. Springer, Heidelberg, pp 1–51CrossRefGoogle Scholar
  6. 6.
    Long GJ (1984) Basic concepts of Mössbauer spectroscopy. In: Long GJ (ed) Mössbauer spectroscopy applied to inorganic chemistry. Springer, US, Boston, MA, pp 7–26CrossRefGoogle Scholar
  7. 7.
    Gütlich P, Bill E, Trautwein AX (2011) Hyperfine interactions. Mössbauer spectroscopy and transition metal chemistry: fundamentals and applications. Springer, Heidelberg, pp 73–135CrossRefGoogle Scholar
  8. 8.
    Parish RV (1986) Mössbauer spectroscopy and the chemical bond. In: Dickson DPE, Berry FJ (eds) Mössbauer spectroscopy. Cambridge University Press, Cambridge, pp 17–69CrossRefGoogle Scholar
  9. 9.
    Szczerba J, Prorok R, Stoch P, Śniezek E, Jastrzebska I (2015) Position of Fe ions in MgO crystalline structure. Nukleonika 60:143–145CrossRefGoogle Scholar
  10. 10.
    Thomas MF, Johnson CE (1986) Mössbauer spectroscopy of magnetic solids. In: Dickson DPE, Berry FJ (eds) Mössbauer spectroscopy. Cambridge University Press, Cambridge, pp 143–197CrossRefGoogle Scholar
  11. 11.
    Grant RW (1975) Mössbauer spectroscopy in magnetism characterization of magnetically-ordered compounds. Springer, Heidelberg, pp 97–137Google Scholar
  12. 12.
    Stoch A, Maurin J, Kulawik J, Stoch P (2017) Structural properties of multiferroic 0.5BiFeO3–0.5Pb(Fe0.5Nb0.5)O3 solid solution. J Eur Ceram Soc 37:1467–1476CrossRefGoogle Scholar
  13. 13.
    Pápai M, Vankó G (2013) On predicting Mössbauer parameters of iron-containing molecules with density-functional theory. J Chem Theory Comput 9:5004–5020CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Neese F, Petrenko T (2011) Quantum chemistry and Mössbauer spectroscopy. Mössbauer spectroscopy and transition metal chemistry. Springer, Heidelberg, pp 137–199CrossRefGoogle Scholar
  15. 15.
    Filatov M (2009) First principles calculation of Mössbauer isomer shift. Coord Chem Rev 253:594–605CrossRefGoogle Scholar
  16. 16.
    Blaha P (2010) Calculations of Mössbauer parameters in solids by DFT bandstructure calculations. J Phys Conf Ser 217:12009CrossRefGoogle Scholar
  17. 17.
    Wdowik UD, Ruebenbauer K (2007) Calibration of the isomer shift for the 14.4-keV transition in Fe57 using the full-potential linearized augmented plane-wave method. Phys Rev B 76:155118CrossRefGoogle Scholar
  18. 18.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Technische Universität Wien, WienGoogle Scholar
  19. 19.
    Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Ernzerhof M, Burke K (1998) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985CrossRefGoogle Scholar
  21. 21.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kurian R, Filatov M (2010) Calibration of 57Fe isomer shift from ab initio calculations: can theory and experiment reach an agreement? Phys Chem Chem Phys 12:2758–2762CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38:R123–R152CrossRefGoogle Scholar
  24. 24.
    Spaldin NA, Fiebig M (2005) Materials science. The renaissance of magnetoelectric multiferroics. Science 309:391–392CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Astrov DN (1961) Magnetoelectric effect in chromium oxide. Sov Phys JETP 13:729–733Google Scholar
  26. 26.
    Spaldin NA, Pickett WE (2003) Computational design of multifunctional materials. J Solid State Chem 176:615–632CrossRefGoogle Scholar
  27. 27.
    Wang KF, Liu J-M, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58:321–448CrossRefGoogle Scholar
  28. 28.
    Park J-G, Le MD, Jeong J, Lee S (2014) Structure and spin dynamics of multiferroric BiFeO3. J Phys Condens Matter 26:433202CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sim H, Peets DC, Lee S, Lee S, Kamiyama T, Ikeda K, Otomo T, Cheong S-W, Park J-G (2014) High-resolution structure studies and magnetoelectric coupling of relaxor multiferroic Pb(Fe0.5Nb0.5)O3. Phys Rev B 90:214438CrossRefGoogle Scholar
  30. 30.
    Tilley RJD (2016) Perovskites: structure-property relationships. Wiley, ChichesterGoogle Scholar
  31. 31.
    Coey JMD (2010) Magnetism and Magnetic Materials. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. 32.
    Gilleo MA (1960) Superexchange interaction in ferrimagnetic garnets and spinels which contain randomly incomplete linkages. J Phys Chem Solids 13:33–39CrossRefGoogle Scholar
  33. 33.
    Anderson PW (1950) Antiferromagnetism theory of superexchange interaction. Phys Rev 79:350–356CrossRefGoogle Scholar
  34. 34.
    Anderson PW (1963) Theory of magnetic exchange interactions: exchange in insulators and semiconductors. Solid State Phys 14:99–214CrossRefGoogle Scholar
  35. 35.
    Dionne GF (2009) Magnetic oxides. Springer, US, BostonCrossRefGoogle Scholar
  36. 36.
    Sosnowska I, Loewenhaupt M, David WIF, Ibberson RM (1992) Investigation of the unusual magnetic spiral arrangement in BiFeO3. Phys Rev B 180–181:117–118Google Scholar
  37. 37.
    Teague JR, Gerson R, James WJ (1970) Dielectric hysteresis in single crystal BiFeO3. Solid State Comm 8:1073–1074CrossRefGoogle Scholar
  38. 38.
    Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr B 46:698–702CrossRefGoogle Scholar
  39. 39.
    Fujii K, Kato H, Omoto K, Yashima M, Chen J, Xing X (2013) Experimental visualization of the Bi–O covalency in ferroelectric bismuth ferrite (BiFeO3) by synchrotron X-ray powder diffraction analysis. Phys Chem Chem Phys 15:6779–6782CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  41. 41.
    Zhang S-T, Zhang Y, Lu M-H, Du C-L, Chen Y-F, Liu Z-G, Zhu Y-Y, Ming N-B, Pan XQ (2006) Substitution-induced phase transition and enhanced multiferroic properties of Bi1−xLaxFeO3 ceramics. Appl Phys Lett 88:162901CrossRefGoogle Scholar
  42. 42.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ravindran P, Vidya R, Kjekshus A, Fjellvag H, Eriksson O (2006) Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys Rev B 74:224412CrossRefGoogle Scholar
  44. 44.
    Sosnowska I, Schäfer W, Kockelmann W, Andersen KH, Troyanchuk IO (2002) Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese. Appl Phys A 74:1040–1042CrossRefGoogle Scholar
  45. 45.
    Dzyaloshinsky I (1958) A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids 4:241–255CrossRefGoogle Scholar
  46. 46.
    Moriya T (1960) Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120:91–98CrossRefGoogle Scholar
  47. 47.
    Sergienko IA, Dagotto E (2006) Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys Rev B 73:94434CrossRefGoogle Scholar
  48. 48.
    Cheong S-W, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:13–20CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Arima T, Tokunaga A, Goto T, Kimura H, Noda Y, Tokura Y (2006) Collinear to spiral spin transformation without changing the modulation wavelength upon ferroelectric transition in Tb1−xDyxMnO3. Phys Rev Lett 96:97202CrossRefGoogle Scholar
  50. 50.
    Blaauw C, van der Woude F (1973) Magnetic and structural properties of BiFeO3. J Phys C Solid State Phys 6:1422–1431CrossRefGoogle Scholar
  51. 51.
    Kulawik J, Szwagierczak D (2007) Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics. J Eur Ceram Soc 27:2281–2286CrossRefGoogle Scholar
  52. 52.
    Levstik A, Filipic C, Holc J (2008) The magnetoelectric coefficients of Pb(Fe1/2Nb1/2)O3 and 0.8Pb(Fe1/2Nb1/2)O3−0.2Pb(Mg1/2W1/2)O3. J Appl Phys 103:66106CrossRefGoogle Scholar
  53. 53.
    Raevski IP, Kubrin SP, Raevskaya SI, Stashenko VV, Sarychev DA, Malitskaya MA, Zakharchenko IN, Smotrakov VG, Eremkin VV (2008) Dielectric and Mossbauer studies of perovskite multiferroics. Ferroelectrics 373:121–126CrossRefGoogle Scholar
  54. 54.
    Watanabe T, Kohn K (1989) Magnetoelectric effect and low temperature transition of Pb(Fe1/2Nb1/2)O3 single crystal. Phase Transit 15:57–68CrossRefGoogle Scholar
  55. 55.
    Bonny V, Bonin M, Sciau P, Schenk KJ, Chapuis G (1997) Phase transitions in disordered lead iron niobate: X-ray and synchrotron radiation diffraction experiments. Solid State Comm 102:347–352CrossRefGoogle Scholar
  56. 56.
    Singh SP, Yusuf SM, Yoon S, Baik S, Shin N, Pandey D (2010) Ferroic transitions in the multiferroic (1 − x)Pb(Fe1/2Nb1/2)O3xPbTiO3 system and its phase diagram. Acta Mater 58:5381–5392CrossRefGoogle Scholar
  57. 57.
    Raevski IP, Kubrin SP, Raevskaya SI, Titov VV, Sarychev DA, Malitskaya MA, Zakharchenko IN, Prosandeev SA (2009) Experimental evidence of the crucial role of nonmagnetic Pb cations in the enhancement of the Néel temperature in perovskite Pb1−xBaxFe1/2Nb1/2O3. Phys Rev B 80:24108CrossRefGoogle Scholar
  58. 58.
    Bhat VV, Ramanujachary KV, Lofland SE, Umarji AM (2004) Tuning the multiferroic properties of Pb(Fe1/2Nb1/2)O3 by cationic substitution. J Magn Magn Mater 280:221–226CrossRefGoogle Scholar
  59. 59.
    Kleemann W, Shvartsman VV, Borisov P, Kania A (2010) Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys Rev Lett 105:257202CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ivanov SA, Tellgren R, Rundlof H, Thomas NW, Ananta S (2000) Investigation of the structure of the relaxor ferroelectric Pb(Fe1/2Nb1/2)O3 by neutron powder diffraction. J Phys-Condens Matter 12:2393CrossRefGoogle Scholar
  61. 61.
    Raevski IP, Kubrin SP, Raevskaya SI, Sarychev DA, Prosandeev SA, Malitskaya MA (2012) Magnetic properties of PbFe1/2Nb1/2O3: Mössbauer spectroscopy and first-principles calculations. Phys Rev B 85:224412CrossRefGoogle Scholar
  62. 62.
    Laguta VV, Rosa J, Jastrabik L, Blinc R, Cevc P, Zalar B, Remskar M, Raevskaya SI, Raevski IP (2010) 93Nb NMR and Fe3+ EPR study of local magnetic properties of magnetoelectric Pb(Fe1/2Nb1/2)O3. Mater Res Bull 45:1720–1727CrossRefGoogle Scholar
  63. 63.
    Yang Y, Liu J-M, Huang HB, Zou WQ, Bao P, Liu ZG (2004) Magnetoelectric coupling in ferroelectromagnet PbFe1∕2Nb1∕2O3 single crystals. Phys Rev B 70:132101CrossRefGoogle Scholar
  64. 64.
    Sunder VS, Halliyal A, Umarji AM (1995) Investigation of tetragonal distortion in the PbTiO3–BiFeO3 system by high-temperature X-ray diffraction. J Mater Res 10:1301–1306CrossRefGoogle Scholar
  65. 65.
    Mahesh Kumar M, Srinivas A, Suryanarayanan SV, Bhimasankaram T (1998) Dielectric and impedance studies on BiFeO3–BaTiO3 solid solutions. Phys Status Solidi A 165:317–326CrossRefGoogle Scholar
  66. 66.
    Patel JP, Senyshyn A, Fuess H, Pandey D (2013) Evidence for weak ferromagnetism, isostructural phase transition, and linear magnetoelectric coupling in the multiferroic Bi0.8Pb0.2Fe0.9Nb0.1O3 solid solution. Phys Rev B 88:104108CrossRefGoogle Scholar
  67. 67.
    Dadami ST, Matteppanavar S, Shivaraja I, Rayaprol S, Angadi B, Sahoo B (2016) Investigation on structural, Mössbauer and ferroelectric properties of (1–x)PbFe0.5Nb0.5O3–(x)BiFeO3 solid solution. J Magn Magn Mater 418:122–127CrossRefGoogle Scholar
  68. 68.
    Stoch A, Zachariasz P, Stoch P, Kulawik J, Maurin J (2011) Structural and Mössbauer effect studies of 0.5Bi0.95Dy0.05FeO3–0.5Pb(Fe2/3W1/3)O3 multiferroic. Acta Phys Pol A 119:59–61CrossRefGoogle Scholar
  69. 69.
    Stoch A, Stoch P, Kulawik J, Zieliński P, Maurin J (2012) Magnetoelectric properties of 0.3Bi0.95Dy0.05FeO3–0.7Pb(Fe2/3W1/3)O3 multiferroic. Acta Phys Pol A 121:128–130CrossRefGoogle Scholar
  70. 70.
    Stoch A, Maurin J, Stoch P, Kulawik J, Szwagierczak D (2017) Crystal structure and Mössbauer effect in multiferroic 0.5BiFeO3–0.5Pb(Fe0.5Ta0.5)O3 solid solution. Nukleonika 62:177–181CrossRefGoogle Scholar
  71. 71.
    Zachariasz P, Stoch A, Stoch P, Maurin J (2013) Hyperfine interactions in xBi0.95Dy0.05FeO3–(1−x)Pb(Fe2/3W1/3)O3 multiferroics. Nukleonika 58:53–56Google Scholar
  72. 72.
    Lagarec K, Rancourt DG (1997) Extended Voigt-based analytic lineshape method for determining N-dimensional correlated hyperfine parameter distributions in Mossbauer spectroscopy. Nucl Instrum Meth B 129:266–280CrossRefGoogle Scholar
  73. 73.
    Rancourt DG (1989) Accurate site populations from Mossbauer spectroscopy. Nucl Instrum Meth B 44:199–210CrossRefGoogle Scholar
  74. 74.
    Stoch A, Stoch P (2018) Magnetoelectric properties of 0.5BiFeO3–0.5Pb(Fe0.5Nb0.5)O3 solid solution. Ceram Int 44:14136–14144CrossRefGoogle Scholar
  75. 75.
    Kowal K, Jartych E, Guzdek P, Stoch P, Wodecka-Duś B, Lisińska-Czekaj A, Czekaj D (2013) X-ray diffraction, Mössbauer spectroscopy, and magnetoelectric effect studies of (BiFeO3)x–(BaTiO3)1−x solid solutions. Nukleonika 58:57–61Google Scholar
  76. 76.
    Park T-J, Papaefthymiou GC, Viescas AJ, Lee Y, Zhou H, Wong SS (2010) Composition-dependent magnetic properties of BiFeO3–BaTiO3 solid solution nanostructures. Phys Rev B 82:24431CrossRefGoogle Scholar
  77. 77.
    MacKenzie KJD, Dougherty T, Barrel J (2008) The electronic properties of complex oxides of bismuth with the mullite structure. J Eur Ceram Soc 28:499–504CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland
  2. 2.Institute of Electron Technology Krakow DivisionKrakowPoland

Personalised recommendations