Advertisement

Material Analysis Using Raman Spectroscopy

A Comparative Study of Graphite, Single- and Multi-walled Carbon Nanotubes
  • Animesh K. Ojha
  • H. Michael Heise
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)

Abstract

A comparative Raman spectroscopic study of single-walled carbon nanotubes (SWCNT), special multi-walled carbon nanotube (MWCNT) material, and graphite is presented. Their Raman spectra have been recorded using different excitation wavelengths, 532, 785, and 1064 nm, in the region of 1800–1200 cm−1. The G-bands of SWCNTs observed at all excitation wavelengths were fitted taking bands into account with Breit-Wigner-Fano (BWF) and Lorentzian line shape functions. The contribution of both BWF and Lorentzian line shapes to the asymmetric G-band shows a mixture of semiconducting as well as metallic CNTs in the SWCNTs. For graphite and MWCNTs, only Lorentzian line shape functions were used for band deconvolution. The variation in wavenumber position of component bands of G-band with laser lines may be due to the resonance Raman effect, where the energy of laser lines matches with the electronic transition energy of CNTs with different diameters and chirality. The apparent Young’s modulus of SWCNT and MWCNT materials was determined using the integrated band intensity ratio of G- and D-bands, ID/IG, and it was found that the SWCNTs have a larger value of the apparent Young’s modulus compared to that of the highly aligned MWCNT material.

Notes

Acknowledgements

AKO is grateful to the Alexander von Humboldt Foundation for the award of a research fellowship. The authors would like to express sincere thanks to Prof. B. P. Asthana and Dr. A. Srivastava for the MWCNT material and suggestions to initiate this work.

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  2. 2.
    Ijima S (1991) Synthesis of carbon nanotubes. Nature 354:56–58CrossRefGoogle Scholar
  3. 3.
    Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as biomedical sensors. Adv Drug Deliv Rev 65:1933–1950CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhito LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2:95–105CrossRefGoogle Scholar
  5. 5.
    Iannazzo D, Piperno A, Pistone A, Grassi G, Galvagno S (2013) Recent advances in carbon nanotubes as delivery systems for anticancer drugs. Curr Med Chem 20:1333–1354CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423:703–703CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bokobza L (2012) A Raman investigation of carbon nanotubes embedded in a soft polymeric matrix. J Inorg Organometallic Polym 22(3):629–635CrossRefGoogle Scholar
  8. 8.
    Baibarac M, Baltog I, Lefrant S (2011) Recent progress in synthesis, vibrational characterization and applications trend of conjugated polymers/Carbon nanotubes composites. Curr Org Chem 15:1160–1196CrossRefGoogle Scholar
  9. 9.
    Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer 51:975–993CrossRefGoogle Scholar
  10. 10.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRefGoogle Scholar
  11. 11.
    Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125CrossRefGoogle Scholar
  12. 12.
    Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRefGoogle Scholar
  13. 13.
    Lu W, Baek JB, Dai L (eds) (2015) Carbon nanomaterials for advanced energy systems: advances in materials synthesis and device applications. Wiley, Hoboken, NJGoogle Scholar
  14. 14.
    Herrero-Latorre C, Álvarez-Méndez J, Barciela-García J, García-Martín S, Peña-Crecente RM (2015) Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: a review. Anal Chim Acta 853:77–94CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Braun EI, Huang A, Tusa CA, Yukica MA, Pantano P (2016) Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation. J Occup Environ Hyg 13:915–923CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rogers-Nieman GM, Dinu CZ (2014) Therapeutic applications of carbon nanotubes: opportunities and challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:327–337CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Herrera-Herrera AV, Gonzalez-Curbelo MA, Hernández-Borges J (2012) Carbon nanotubes applications in separation science: a review. Anal Chim Acta 734:1–30CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Socas-Rodríguez B, Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J (2014) Recent applications of carbon nanotube sorbents in analytical chemistry. J Chromatogr A 1357:110–146CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nat Mat 3:610–614CrossRefGoogle Scholar
  20. 20.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRefGoogle Scholar
  21. 21.
    Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettle A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275:1922–1925CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Krauss TD, Wise FW, Tanner DB (1996) Observation of coupled vibrational modes of a semiconductor nanocrystal. Phys Rev Lett 76:1376–1379CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bischof T, Lermann G, Schreder B, Materny A, Kiefer W, Ivanda M (1997) Intensity-dependent micro-Raman and photoluminescence investigations of CdSxSe1−x nanocrystallites. J Opt Soc Am B 14:3334–3338CrossRefGoogle Scholar
  24. 24.
    Schreder B, Materny A, Kiefer W, Kümmell T, Bacher G, Forchel A, Landwehr G (2000) Raman investigation of CdxZn1−xSe/ZnSe quantum wires: Strain relaxation and excitation profile. J Appl Phys 88:764–771CrossRefGoogle Scholar
  25. 25.
    Jorio A, Dresselhaus G, Dresselhaus MS, Souza M, Dantas MSS, Pimenta MA, Rao AM, Saito R, Liu C, Cheng HM (2000) Polarized Raman study of single-wall semiconducting carbon nanotubes. Phys Rev Lett 85:2617–2620CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kasuya A, Sasaki Y, Saito Y, Tohji K, Nishina Y (1997) Evidence for size-dependent discrete dispersions in single-wall nanotubes. Phys Rev Lett 78:4434–4441CrossRefGoogle Scholar
  27. 27.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Jorio A, Kauppinen E, Hassanien A (2008) Carbon-nanotube metrology. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes. Topics applied in physics, vol 111. Springer, Berlin, pp 63–100Google Scholar
  29. 29.
    Thomsen C, Reich S (2007) Raman scattering in carbon nanotubes. In: Cardona M, Merlin R (eds) Light scattering in solid IX. Topics applied in physics, vol 108. Springer, Berlin, pp 115–232Google Scholar
  30. 30.
    Saito R, Grüneis A, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Jario A, Canҫado LG, Fantini C, Pimenta MA, Filho AGS (2003) Double resonance Raman spectroscopy of single-wall carbon nanotubes. New J Phys 5:157CrossRefGoogle Scholar
  31. 31.
    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotube. Imperial College Press, LondonCrossRefGoogle Scholar
  32. 32.
    Dresselhaus MS, Endo M (2001) Carbon nanotubes: synthesis, structure, properties and applications. In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Topics Applied in Physics, vol 80. Springer, Berlin, pp 11–28Google Scholar
  33. 33.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poeschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRefGoogle Scholar
  34. 34.
    Dresselhaus MS, Dresselhaus G, Jorio A (2007) Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007. J Phys Chem C 111:17887–17893CrossRefGoogle Scholar
  35. 35.
    Jorio A, Pimenta MA, Souza Filho AG, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 5:139CrossRefGoogle Scholar
  36. 36.
    Enomoto K, Kitakata S, Yasuhara T, Ohtake N (2006) Measurement of Young’s modulus of carbon nanotubes by nanoprobe manipulation in a transmission electron microscope. Appl Phys Lett 88:153115–153117CrossRefGoogle Scholar
  37. 37.
    Heise HM, Kuckuk R, Ojha AK, Srivastava A, Srivastava V, Asthana BP (2009) Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite. J Raman Spectrosc 40:344–353CrossRefGoogle Scholar
  38. 38.
    Heise HM, Kuckuk R, Srivastava A, Asthana BP (2011) Characterization of carbon nanotube filters and other carbonaceous materials by Raman spectroscopy—II: study on dispersion and disorder parameters. J Raman Spectrosc 42:294–302CrossRefGoogle Scholar
  39. 39.
    Fantini C, Jorio A, Souza M, Strano MS, Dresselhaus MS, Pimenta MA (2004) Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. Phys Rev Lett 93:147406–147410CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Diameter control of single-walled carbon nanotubes. Synth Met 103:2555–2558CrossRefGoogle Scholar
  41. 41.
    Brown SDM, Jorio A, Corio P, Dresselhaus MS, Dresselhaus G, Saito R, Kneipp K (2001) Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys Rev B 63:155414–155421CrossRefGoogle Scholar
  42. 42.
    Puretzky AA, Schittenhelm H, Fan X, Lance JM Jr, Allard LF, Geohegan DB (2002) Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys Rev B 65:245425–245433CrossRefGoogle Scholar
  43. 43.
    Tuinstra F, Foenig J (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRefGoogle Scholar
  44. 44.
    Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneipp K (2000) Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 64:R5137CrossRefGoogle Scholar
  45. 45.
    Dresselhaus MS, Dresselhaus G, Hofmann M (2007) The big picture of Raman scattering in carbon nanotubes. Vib Spectrosc 45:71–81CrossRefGoogle Scholar
  46. 46.
    Miyata Y, Yanagi K, Maniwa Y, Kataura H (2008) Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J Phys Chem 112:13187–13191Google Scholar
  47. 47.
    Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Miyata Y, Mizuno K, Kataura H (2011) Purity and defect characterization of single-wall carbon nanotubes using raman spectroscopy. J Nanomater 786763Google Scholar
  49. 49.
    DiLeo RA, Landi BJ, Raffaelle RP (2007) Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J Appl Phys 101:064307–64311CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsMotilal Nehru National Institute of TechnologyAllahabadIndia
  2. 2.Interdisciplinary Center for Life SciencesSouth-Westphalia University of Applied SciencesIserlohnGermany

Personalised recommendations