Advertisement

Quantum Dot and Fullerene with Organic Chromophores as Electron-Donor-Acceptor Systems

  • Danuta Wróbel
  • Bolesław Barszcz
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)

Abstract

This review paper is focused on the research of molecular mechanisms occurring in porphyrin-like systems such as porphyrins, phthalocyanines, and corroles as well as in chromophore-semiconductor quantum dot (QD-CdSe/ZnS) or corrole-fullerene (C60) as electron-donor-acceptor unites. The basic spectroscopic investigations describe properties of materials in organic solutions in the ultraviolet, visible, and infrared ranges and in a form of Langmuir and Langmuir–Blodgett molecular nanolayers to get knowledge on photophysics of dyes and the influence of QD and C60 on the electron redistribution within the molecular structures. The studies also allowed to explain the impact of solvent on the spectroscopic properties of corroles and on the redistribution of the π-electrons in the excited state. The fluorescence studies very evidently showed strong interaction between chromophores and C60 or QD and clearly demonstrated the strong donor-acceptor nature of the phthalocyanines-quantum dot and the corrole-fullerene dyad. In addition, spectroscopic studies in polarized light allowed determining molecular arrangement of the chromophore molecules in the Langmuir–Blodgett layers with respect to solid substrates. The computer calculations (TD-DFT theory) confirmed the experimental results, in particular the redistribution of the π-electrons in the excited state and the location of HOMO and LUMO levels. The DFT calculations let also to evaluate the reorganization energy values for the set of free-base corroles and C60 fullerene. In this review, it was shown the electron-donor-acceptor character of the systems composed of: porphyrin-quinone, phthalocyanines-QD, corroles-C60 dyads. It has been demonstrated potential capabilities of the photoactive organic materials with QD and fullerene in the future applications in many areas of optoelectronic and in the process of converting solar energy into electric energy in solar cells.

Notes

Acknowledgements

The paper is supported by Poznan University of Technology, the grant DS 06/62/DSPB/2181. The author is much grateful to Prof. D. T. Gryko (Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland) for the gift of the corrole and corrole-fullerene samples. We also thank M.Sc. Eng. Kamil Kędzieski for the help of drawings.

References

  1. 1.
    Wróbel D (2016) From natural photosynthesis to molecular photovoltaics. Mol Cryst Liq Cryst 627:4–22CrossRefGoogle Scholar
  2. 2.
    Gong X, Milic T, Xu C, Batteas JD, Drain CM (2002) Preparation and characterization of porphyrin nanoparticles. J Am Chem Soc 124:14290–14291CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Huang X, Nakanishi K, Berova N (2000) Porphyrins and metalloporphyrins: versatile circular dichroic reporter groups for structural studies. Chirality 12:237–255CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Braun A, Tcherniac J (1907) Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid. Ber Dtsch Chem Ges 40:2709–2714CrossRefGoogle Scholar
  5. 5.
    Dolphin D (1978) The porphyrins, vol III. Academic Press, CambridgeGoogle Scholar
  6. 6.
    Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  7. 7.
    Morandeira A, López-Duarte I, Martínez-Díaz MV, O’Regan B, Shuttle C, Haji- Zainulabidin NA, Torres T, Palomares E, Durrant RJ (2007) Slow electron injection on Ru–phthalocyanine sensitized TiO2. J Am Chem Soc 129:9250–9251CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Luo L, Lin CJ, Tsai CY, Wu HP, Li LL, Lo CF, Lin CY, Diau EW (2010) Effects of aggregation and electron injection on photovoltaic performance of porphyrin-based solar cells with oligo(phenylethynyl) links inside TiO2 and Al2O3 nanotube arrays. Phys Chem Chem Phys 12:1064–1071CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Heimer TA, Heilweil EJ (1997) Direct time-resolved infrared measurement of electron injection in dye-sensitized titanium dioxide films. J Phys Chem 101:10990–10993CrossRefGoogle Scholar
  10. 10.
    Hasobe T, Imahori H, Kamat PY, Ahn TK, Kim SK, Kim D, Fujimoto A, Hirakawa T, Fukuzumi S (2005) Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J Am Chem Soc 127:1216–1228CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Schmidt-Mende L, Campbell WM, Wang Q, Jolley KW, Officer DL, Nazeeruddin KM, Grätzel M (2005) Zn-porphyrin-sensitized nanocrystalline TiO2 heterojunction photovoltaic cells. Chem Phys 6:1253–1258Google Scholar
  12. 12.
    Lee MW, Lee DL, Yen WN, Yeh CY (2009) Synthesis, optical and photovoltaic properties of porphyrin dyes. J Macromol Sci Part A 46:730–737CrossRefGoogle Scholar
  13. 13.
    Smertenkov PS, Kostylev VP, Kislyuk VV, Syngaevsky AF, Zynio SA, Dimitriev OP (2008) Photovoltaic cells based on cadmium sulphide–phthalocyanine heterojunction. Sol Energy Mater Sol Cells 92:976–979CrossRefGoogle Scholar
  14. 14.
    Wróbel D, Goc J, Ion RM (1998) Photovoltaic and spectral properties of tetraphenyloporphyrin and metallotetraphenyloporphyrin dyes. J Mol Struct 450:239–246CrossRefGoogle Scholar
  15. 15.
    Wróbel D, Siejak A, Siejak P (2010) Photovoltaic and spectroscopic studies of selected halogenated porphyrins for their application in organic solar cells. Sol Energy Mater Sol Cells 94:492–500CrossRefGoogle Scholar
  16. 16.
    Siejak A, Wróbel D, Ion RM (2006) Study of resonance effects in copper phthalocyanines. J Photochem Photobiol A Chem 181:180–187CrossRefGoogle Scholar
  17. 17.
    Siejak A, Wróbel D, Olejarz B, Ion RM (2009) Spectroscopic and photoelectric investigations of resonance effects in selected sulfonated phthalocyanines. Dyes Pigm 83:281–290CrossRefGoogle Scholar
  18. 18.
    Karimi AR, Khodadadi A (2012) Synthesis and solution properties of new metal-free and metallo-phthalocyanines containing four bis(indol-3-yl)methane groups. Tetrahedron Lett 53:5223–5226CrossRefGoogle Scholar
  19. 19.
    Bursa B, Wróbel D, Biadasz A, Kędzierski K, Lewandowska K, Graja A, Szybowicz M, Durmuş M (2014) Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers—spectroscopic investigations. Spectrochim Acta A 128:489–496CrossRefGoogle Scholar
  20. 20.
    Bursa B, Biadasz A, Kędzierski K, Wróbel D (2014) Quantum dot with zinc and copper substituted phthalocyanines. 1. Energy transfer in solution and in-situ light absorption in Langmuir monolayers. J Lumin 145:779–786CrossRefGoogle Scholar
  21. 21.
    Kędzierski K, Barszcz B, Kotkowiak M, Bursa B, Goc J, Dinçer H, Wróbel D (2016) Photophysics of an unsymmetrical Zn(II) phthalocyanine substituted with terminal alkynyl group. J Lumin 180:132–139CrossRefGoogle Scholar
  22. 22.
    Meyer T, Ogermann D, Pankrath A, Kleinermanns K, Müller TJ (2012) Phenothiazinyl rhodanylidene merocyanines for dye-sensitized solar cells. J Org Chem 77:3704–3715CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wróbel D, Boguta A, Ion RM (2001) Mixtures of synthetic organic dyes in a photoelectrochemical cell. J Photochem Photobiol 138:7–22CrossRefGoogle Scholar
  24. 24.
    Chamberlain GA, Cooney PJ, Dennison S (1981) Photovoltaic properties of merocyanine solid-state photocells. Nature 289:45–47CrossRefGoogle Scholar
  25. 25.
    Steinmann V, Kronenberg NM, Lenze MR, Graf SM, Hertel D, Meerholz K, Bürckstümmer H, Tulyakova EV, Würthner F (2011) Simple, highly efficient vacuum-processed bulk heterojunction solar cells based on merocyanine dyes. Adv Energy Mater 1(5):888–893CrossRefGoogle Scholar
  26. 26.
    Abdou EM, Hafez HS, Bakir E, Abdel-Mottaleb MS (2013) Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes. Spectrochim Acta A 115:202–207CrossRefGoogle Scholar
  27. 27.
    Arjona-Esteban A, Lenze MR, Meerholz K, Würthner F (2017) Donor-acceptor dyes for organic photovoltaics. In: Leo K (ed) Elementary processes in organic photovoltaics. Advances in polymer science 272. Springer, BerlinGoogle Scholar
  28. 28.
    Wróbel D, Łukasiewicz J, Manikowski H (2003) Fluorescence quenching and ESR spectroscopy of metallic porphyrins in the presence of an electron acceptor. Dyes Pigm 58:7–18CrossRefGoogle Scholar
  29. 29.
    Pace NA, Reid OG, Rumbles G (2018) Delocalization drives free charge generation in conjugated polymer films. ACS Energy Lett 3:735–741CrossRefGoogle Scholar
  30. 30.
    Li L, Kang S-W, Harden J, Sun Q, Zhou X, Dai L, Jakli A, Kumar S, Li Q (2008) Nature-inspired light-harvesting liquid crystalline porphyrins for organic photovoltaics. Liq Cryst 35:233–239CrossRefGoogle Scholar
  31. 31.
    Imahori H, Hayashi S, Hayashi H, Oguro A, Eu S, Umeyama T, Matano Y (2009) Effects of porphyrin substituents and adsorption conditions on photovoltaic properties of porphyrin-sensitized TiO2 cells. J Phys Chem C 113:18406–18413CrossRefGoogle Scholar
  32. 32.
    Idowu M, Chen J-Y, Nyokong T (2008) Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New J Chem 32:290–296CrossRefGoogle Scholar
  33. 33.
    Britton J, Antunes E, Nyokong T (2010) Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines. J Photochem Photobiol A 210:1–7CrossRefGoogle Scholar
  34. 34.
    Li L, Zhao J-F, Won N, Jin H, Kim S, Chen J-Y (2012) Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer. Nanoscale Res Lett 7:386CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bursa B, Rytel K, Skrzypiec M, Prochaska K, Wróbel D (2018) Thin film of CdTeSe/ZnS quantum dots on water subphase: thermodynamics and morphology studies. Dyes Pigm 155:36–41CrossRefGoogle Scholar
  36. 36.
    Jun HK, Careem MA, Arof AK (2013) Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew Sust Energ Rev 22:148–167CrossRefGoogle Scholar
  37. 37.
    Jeltsch KF, Schädel M, Bonekamp J-B, Niyamakom P, Rauscher F, Lademann HWA, Dumsch I, Allard S, Scherf U, Meerholz K (2012) Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods. Adv Funct Mater 22:397–404CrossRefGoogle Scholar
  38. 38.
    Ma J, Chen J-Y, Idowu M, Nyokong T (2008) Generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dots-sulfonated aluminum phthalocyanines. J Phys Chem B 112:4465–4469CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Biadasz A, Bursa B, Barszcz B, Bogucki A, Laskowska B, Graja A, Wróbel D (2011) Thermodynamics and in-situ absorption of Langmuir monolayers of selected copper phthalocyanine substituted with different peripheral groups. Dyes Pigm 89:86–92CrossRefGoogle Scholar
  40. 40.
    Martynenko IV, Orlova AO, Maslov VG, Fedorov AV, Berwick K, Baranov AV (2016) The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes. Beilstein J Nanotechnol 7:1018–1027CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Fortage J, Boixel J, Blart E, Hammarström L, Becker HC, Odobel F (2008) Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads. Chemistry 14:3467–3480CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Leng H, Loy J, Amin V, Weiss EA, Pelton M (2016) Electron transfer from single semiconductor nanocrystals to individual acceptor molecules. ACS Energy Lett 1:9–15CrossRefGoogle Scholar
  43. 43.
    Claessens CG, Hahn U, Torres T (2008) Phthalocyanines: From outstanding electronic properties to emerging applications. Chem Rec 8:75–97CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bae WK, Char K, Hur H, Lee S (2008) Single-step synthesis of quantum dots with chemical composition gradients. Chem Mater 20:531–539CrossRefGoogle Scholar
  45. 45.
    Toyoda T, Yindeesuk W, Kamiyama K, Katayama K, Kobayashi H, Hayase S, Shen Q (2016) The electronic structure and photoinduced electron transfer rate of CdSe quantum dots on single crystal rutile TiO2: dependence on the crystal orientation of the substrate. J Phys Chem C 120:2047–2057CrossRefGoogle Scholar
  46. 46.
    Aviv I, Gross Z (2007) Corrole-based applications. Chem Commun 20:1987–1999CrossRefGoogle Scholar
  47. 47.
    Flamigni L, Gryko DT (2009) Photoactive corrole-based arrays. Chem Soc Rev 38:1635–1646CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Gryko DT (2008) Adventures in the synthesis of meso-substituted corroles. Porphyrins Phthalocyanines 12:906CrossRefGoogle Scholar
  49. 49.
    Harris RLN, Johnson AW, Kay IT (1966) The synthesis of porphins and related macrocycles. Q Rev Chem Soc 20:211–244CrossRefGoogle Scholar
  50. 50.
    Roberts JD, Streitwieser A, Regan CM (1952) Small-ring compounds. X. Molecular orbital calculations of properties of some small-ring hydrocarbons and free radicals. J Am Chem Soc 18:4579–4582CrossRefGoogle Scholar
  51. 51.
    Ventura B, Esposti AD, Koszarna B, Gryko DT, Flamigni L (2005) Photophysical characterization of free-base corroles, promising chromophores for light energy conversion and singlet oxygen generation. New J Chem 29:1559–1566CrossRefGoogle Scholar
  52. 52.
    Kadish KM, Shen J, Frémond L, Chen P, El Ojaimi M, Chkounda M, Gros CP, Barbe J-M, Ohkubo K, Fukuzumi S, Guilard R (2008) Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen. Inorg Chem 47(15):6726–6737CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Palmer JH (2011) Transition metal corrole coordination chemistry. In: Mingos D, Day P, Dahl J (eds) Molecular electronic structures of transition metal complexes I. structure and bonding, vol 142. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  54. 54.
    Gouterman M, Wagnière GH, Snyder LC (1963) Spectra of porphyrins: Part II. Four orbital model. J Mol Spectrosc 11:108–127CrossRefGoogle Scholar
  55. 55.
    Lei H, Han A, Li F, Zhang M, Han Y, Du P, Lai W, Cao R (2014) Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. Phys Chem Chem Phys 16:1883–1893CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kobayashi T, Mao K, Paluch P, Nowak-Król A, Sniechowska J, Nishiyama Y, Gryko DT, Potrzebowski MJ, Pruski M (2013) Study of intermolecular interactions in the corrole matrix by solid-state NMR under 100 kHz MAS and theoretical calculations. Angew Chem Int Ed 52:14108–14111CrossRefGoogle Scholar
  57. 57.
    McNicholas BJ, Blumenfeld C, Kramer WW, Grubbs RH, Winkler JR, Gray HB (2017) Electrochemistry in ionic liquids: case study of a manganese corrole. Rus J Electrochem 53:1189–1193CrossRefGoogle Scholar
  58. 58.
    Ding T, Harvey JD, Ziegler CJ (2005) N-H tautomerization in triaryl corroles. J Porphyrins Phthalocyanines 9:22–27CrossRefGoogle Scholar
  59. 59.
    Konarev DV, Kariminov DR, Khasanov SS, Shestakov AF, Otsuka A, Yamochi H, Kitagawa H, Lyubovskaya RN (2017) Solid state structures and properties of free-base 5,10,15-triphenylcorrole (TPCor) anions obtained by deprotonation and reduction. Effective magnetic coupling of spins in (Cp*2Cr+)(H+)(H2TPCor˙2) C6H4Cl2. Dalton Trans 46:13994CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Beenken W, Presselt M, Ngo TH, Dehaen W, Maes W, Kruk M (2014) Molecular structures and absorption spectra assignment of corrole NH tautomers. J Phys Chem A 118:862–871CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bursa B, Wróbel D, Barszcz B, Kotkowiak M, Vakuliuk O, Gryko DT, Kolanowski Ł, Baraniak M, Lota G (2016) The impact of solvents on the singlet and triplet states of selected fluorine corroles—absorption, fluorescence, and optoacoustic studies. Phys Chem Chem Phys 18:7216–7228CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bursa B, Barszcz B, Bednarski W, Lewtak JP, Koszelewski D, Vakulyuk O, Gryko DT, Wróbel D (2015) New meso-substituted corroles possessing pentafluorophenyl groups—synthesis and spectroscopic characterization. Phys Chem Chem Phys 17:7411–7423CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kandala LVK, Kaur T, Ravikanth M (2017) One pot synthesis of unusual meso-dipyrrinyl corrole. RSC Adv 7:19878–19884CrossRefGoogle Scholar
  64. 64.
    Ooi S, Tanaka T, Park KH, Kim D, Osuka A (2016) Triply linked corrole dimers. Angew Chem Int Ed 55:6535–6539CrossRefGoogle Scholar
  65. 65.
    D’Souza F, Chitta R, Ohkubo K, Tasior M, Subbaiyan NK, Zandler ME, Rogacki MK, Gryko DT, Fukuzumi S (2008) Corrole-fullerene dyads: formation of long-lived charge-separated states in nonpolar solvents. J Am Chem Soc 130:14263–14272CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Paolesse R, Nardis S, Sagone F, Khoury RG (2001) Synthesis and functionalization of meso-aryl-substituted corroles. J Org Chem 66(2):550–556CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Orłowski R, Gryko D, Gryko DT (2017) Synthesis of corroles and their heteroanalogs. Chem Rev 117:3102–3137CrossRefPubMedCentralGoogle Scholar
  68. 68.
    D’Urso A, Nardis S, Pomarico G, Fragalà ME, Paolesse R, Purrello R (2013) Interaction of tricationic corroles with single/double helix of homopolymeric nucleic acids and DNA. J Am Chem Soc 135:8632–8638CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sheng X, Zhao H, Du L (2017) Selectivity of cobalt corrole for CO vs. O2 and N2 in indoor pollution. Sci Rep 7:14536Google Scholar
  70. 70.
    Santos CIM (2014) Corroles: synthesis, functionalization and application as chemosensors. Chem Open 3:88–92Google Scholar
  71. 71.
    Gaussian 09, Revision E.01 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian, Inc., Wallingford CTGoogle Scholar
  72. 72.
    Wasbotten IH, Wondimagegn T, Ghosh A (2002) Electronic absorption, resonance raman, and electrochemical studies of planar and saddled copper(iii) meso-triarylcorroles. highly substituent-sensitive soret bands as a distinctive feature of high-valent transition metal corroles. J Am Chem Soc 124:8104–8116CrossRefPubMedCentralGoogle Scholar
  73. 73.
    Steene E, Wondimagegn T, Ghosh A (2002) Resonance Raman spectroscopy and density functional theoretical calculations of manganese corroles. A parallelism between high-valent metallocorroles and metalloporphyrins, relevant to horseradish peroxidase and chloroperoxidase compound I and II intermediates. J Inorg Biochem 88:113–118CrossRefPubMedCentralGoogle Scholar
  74. 74.
    Czernuszewicz RS, Mody V, Zareba AA, Zaczek MB, Gałęziowski M, Sashuk V, Grela K, Gryko DT (2007) Solvent-dependent resonance Raman spectra of high-valent oxomolybdenum(v) tris[3,5-bis(trifluoromethyl)phenyl]corrolate. Inorg Chem 46:5616–5624CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zakharieva O, Veeger C (2005) DFT normal coordinate analysis of the vibrational spectra of iron and germanium corroles. J Mol Struct: THEOCHEM 723:171–182CrossRefGoogle Scholar
  76. 76.
    Wang H, Yang C, Zhang Z, Wang M, Han K (2006) The molecular structure and vibrational spectra of corrolazine metal complexes (CzM) by density functional theory. Spectrochim Acta A 64:795–800CrossRefGoogle Scholar
  77. 77.
    Lewandowska K, Barszcz B, Wolak J, Graja A, Grzybowski M, Gryko DT (2013) Vibrational properties of new corrole–fullerene dyad and its components. Dyes Pigm 96:249–255CrossRefGoogle Scholar
  78. 78.
    Bursa B, Wróbel D, Lewandowska K, Graja A, Grzybowski M, Gryko DT (2013) Spectral studies of molecular orientation in corrole-fullerene thin films. Synth Met 176:18–25CrossRefGoogle Scholar
  79. 79.
    Gross Z, Galili N, Simkhovich L, Saltsman I, Botoshansky M, Bläser D, Boese R, Goldberg I (1999) Solvent-free condensation of pyrrole and pentafluorobenzaldehyde: a novel synthetic pathway to corrole and oligopyrromethenes. Org Lett 1:599–602CrossRefGoogle Scholar
  80. 80.
    Langa F, Nierenganter JF (eds) (2007) Fullerenes and applications. The Royal Society of Chemistry (and references citated therein)Google Scholar
  81. 81.
    Imahori H, Sakata Y (1999) Fullerenes as novel acceptors in photosynthetic electron transfer. Eur J Org Chem 1999:2445–2457CrossRefGoogle Scholar
  82. 82.
    Imahori H, Mori Y, Matano Y (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C 4:51–83CrossRefGoogle Scholar
  83. 83.
    Łapiński A, Graja A, Olejniczak I, Bogucki A, Imahori H (2004) Supramolecular porphyrin/fullerene interactions studied by spectral methods. Chem Phys 305:277–284CrossRefGoogle Scholar
  84. 84.
    Ohkubo K, Kotani H, Shao J, Ou Z, Kadish KM, Li G, Pandey RK, Fujitsuka M, Ito O, Imahori H, Fukuzumi S (2004) Production of an ultra-long-lived charge-separated state in a zinc chlorine-C60 dyad by one-step photoinduced electron transfer. Angew Chem Int Ed 43:853–856CrossRefGoogle Scholar
  85. 85.
    Imahori H, Guldi DM, Tamaki K, Yoshida Y, Luo C, Sakata Y, Fukuzumi S (2001) Charge separation in a novel artificial photosynthetic reaction center lives 380 ms. J Am Chem Soc 123:6617–6628CrossRefPubMedCentralGoogle Scholar
  86. 86.
    Guldi DM (2002) Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 31:22–36CrossRefPubMedCentralGoogle Scholar
  87. 87.
    Imahori H, El-Khouly ME, Fujitsuka M, Ito O, Sakata Y, Fukuzumi S (2001) Solvent dependence of charge separation and charge recombination rates in porphyrin-fullerene dyad. J Phys Chem A 105:325–332CrossRefGoogle Scholar
  88. 88.
    Mizuseki H, Igarashi N, Belosludov RV, Farajian AA, Kawazoe Y (2003) Theoretical study of phthalocyanine–fullerene complex for a high efficiency photovoltaic device using ab initio electronic structure calculation. Synth Met 138:281–283CrossRefGoogle Scholar
  89. 89.
    Förster Th (1949) Experimentelle und theoretische untersuchung des zwischenmolekularen übergangs von elektronenanregungsenergie. Z Naturforsch A 4(5):321–327Google Scholar
  90. 90.
    Förster T et al (1965) Delocalized excitation and excitation transfer. In: Sinanoghi O (ed) Modern quantum chemistry. Academic Press, New York, p 93Google Scholar
  91. 91.
    Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836CrossRefGoogle Scholar
  92. 92.
    Lewandowska K, Barszcz B, Graja A, Bursa B, Biadasz A, Wróbel D, Bednarski W, Waplak S, Grzybowski M, Gryko DT (2013) Absorption and emission properties of the corrole-fullerene dyad. Synth Met 166:70–76CrossRefGoogle Scholar
  93. 93.
    Lewandowska K, Bednarski W, Milczarek G, Waplak S, Graja A, Park EY, Kim T-D, Lee K-S (2011) Photoelectrochemical cells based on LB films of fullerene-thiophene derived dyads. Synth Met 161:1640–1645CrossRefGoogle Scholar
  94. 94.
    Graja A (2012) Corrole-fullerene dyads: Will they place porphyrin-fullerene systems? Mol Cryst Liq Cryst 554:31–42CrossRefGoogle Scholar
  95. 95.
    Wróbel D, Lewandowska K (2011) Covalent dyads of porphyrin–fullerene and perylene–fullerene for organic photovoltaics: spectroscopic and photocurrent studies. Opt Mater 33:1424–1428CrossRefGoogle Scholar
  96. 96.
    Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24:966CrossRefGoogle Scholar
  97. 97.
    Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322CrossRefGoogle Scholar
  98. 98.
    Lin BC, Cheng CP, Lao ZPM (2003) Reorganization energies in the transports of holes and electrons in organic amines in organic electroluminescence studied by density functional theory. J Phys Chem A 107:5241–5251CrossRefGoogle Scholar
  99. 99.
    Tokunaga K (2009) On the difference in electronic properties between fullerene C60 and C60X2. Chem Phys Lett 476:253–257CrossRefGoogle Scholar
  100. 100.
    Tokunaga K (2012) Hydrogenation of fullerene C60: material design of organic semiconductors by computation. In: Karamé I (ed) Hydrogenation InTech.  https://doi.org/10.5772/48534Google Scholar
  101. 101.
    Brizet B, Desbois N, Bonnot A, Langlois A, Dubois A, Barbe J-M, Gros CP, Goze C, Denat F, Harvey PD (2014) Slow and fast singlet energy transfers in BODIPY-gallium(iii)corrole dyads linked by flexible chains. Inorg Chem 53:3392–3403CrossRefPubMedCentralGoogle Scholar
  102. 102.
    Wróbel D, Graja A (2011) Photoinduced electron transfer processes in fullerene–organic chromophore systems. Coord Chem Rev 255:2555–2577CrossRefGoogle Scholar
  103. 103.
    Imahori H, Tkachenko NV, Vehmanen V, Tamaki K, Lemmetyien H, Sakata Y, Fukuzumi S (2001) An extremely small reorganization energy of electron transfer in porphyrin-fullerene dyad. J Phys Chem 105:1750–1756CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Technical PhysicsInstitute of Physics, Poznan University of TechnologyPoznańPoland
  2. 2.Institute of Molecular Physics Polish Academy of SciencesPoznańPoland

Personalised recommendations