Spectroscopy in the Analysis of Artworks

  • Tomasz ŁojewskiEmail author
  • Barbara Łydżba-Kopczyńska
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)


This chapter is dedicated to the application of selected spectroscopic techniques to investigations on cultural heritage objects. The rapid technical advancement of Raman instrumentation, observed in the recent years, positioned this spectroscopy as an outmost tool in this field. The use of Raman spectroscopy in the analysis of chemical composition is presented for several classes of heritage materials: manuscripts, painting, ceramics, minerals, and amber. In Sect. 16.3, Vis fiber optic reflectance spectroscopy is presented as a tool allowing one to obtain information important for selecting proper preventive measures, in this case, exhibition policies safeguarding artifacts against photodegradation. The technique discussed here—the microfade testing (MFT)—allows monitoring color changes as induced by the action of light on a selected spot on the artifact in real time, thus giving the most direct, empirical clues to a possible future alteration of the objects’ appearance when it is exposed to light on a museum wall.


  1. 1.
    Ferchault de Réaumur RA (1719) Observations sur la matière qui colore des perles fausses et sur quelques autres matières animales d’une semblable couleur, à l’occasion de quoi on essaie d’expliquer la formation des écailles de poissons. In: Académie des Sciences (ed) Memoires Académie des Sciences. Académie des Sciences. ParisGoogle Scholar
  2. 2.
    Ferchault de Réaumur RA. (1727) Idée générale des différentes manières dont on peut faire la Porcelaine et quelles sont les véritablesmatières de celle de la Chine. In: Académie des Sciences (ed) Memoires Académie des Sciences. ParisGoogle Scholar
  3. 3.
    Ferchault de Réaumur RA (1729) Second mémoire sur la porcelaine ou suite des principes qui doivent conduire dans la composition des porcelaines de différents genres et qui établissent les caractères des matières fondantes qu’on ne peut choisir pour tenir lieu de celle qu’on employe à l. In: Académie des Sciences (ed) Memoires Académie des Sciences. ParisGoogle Scholar
  4. 4.
    Ferchault de Réaumur RA. (1736) Mémoire sur l’art de faire une nouvelle espèce de Porcelaine par des moyens extrêmement simples et faciles ou de transformer le verre en porcelaine. In: Académie des Sciences (ed) Memoires Académie des Sciences. ParisGoogle Scholar
  5. 5.
    Edwards HGM, Vandenabeele P (2016) Raman spectroscopy in art and archaeology. Phil Trans R Soc A 374:1–3Google Scholar
  6. 6.
    Pollard, A. M., Batt, C. M., Stern, B. and Young SMM (2007) Analytical chemistry in archaeology. Camb Manuals ArchaeolGoogle Scholar
  7. 7.
    Eccles HRB (1922) Analysis of English porcelains in the V&A museum collections. Victoria and Albert Museum Publishing, South KensingtonGoogle Scholar
  8. 8.
    Vandenabeele P, Edwards HGM, Moens L (2007) A decade of Raman spectroscopy in art and archeology. Chem Rev 107:675–686PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Vandenabeele P, Edwards HGM, Jehlička J (2014) The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem Soc Rev 43:2628PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Centeno SA (2016) Identification of artistic materials in paintings and drawings by Raman spectroscopy: some challenges and future outlook. J Raman Spectrosc 47:9–15CrossRefGoogle Scholar
  11. 11.
    Casadio F, Daher C, Bellot-Gurlet L (2016) Raman Spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top Curr Chem 5:374Google Scholar
  12. 12.
    Bersani D, Conti C, Matousek P, Pozzi F, Vandenabeele P (2016) Methodological evolutions of Raman spectroscopy in art and archaeology. Anal Methods 8:8395–8409CrossRefGoogle Scholar
  13. 13.
    Colomban P (2018) On-site Raman study of artwork: procedure and illustrative examples. J Raman Spectrosc 49:921–934CrossRefGoogle Scholar
  14. 14.
    Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation Spectrochim Acta PA 57:1491–1521CrossRefGoogle Scholar
  15. 15.
    Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta A 59:2247–2266CrossRefGoogle Scholar
  16. 16.
    Fremout W, Saverwyns S (2012) Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J Raman Spectrosc 43:1536–1544CrossRefGoogle Scholar
  17. 17.
    Vandenabeele P, Moens L, Edwards HGM, Dams R (2000) Raman spectroscopic database of azo pigments and application to modern art studies. J Raman Spectrosc 31:509–517CrossRefGoogle Scholar
  18. 18.
    Edwards HGM, Farwell DW, Daffner L (1996) Fourier-transform Raman spectroscopic study of natural waxes and resins. Spectrochim Acta A 52:1639–1648CrossRefGoogle Scholar
  19. 19.
    Leona M, Stenger J, Ferloni E (2006) Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J Raman Spectrosc 37:981–992CrossRefGoogle Scholar
  20. 20.
    Edwards HGM, Farwell DW, Holder JM, Lawson EE (1997) Fourier-transform Raman spectroscopy of ivory: II. Spectroscopic analysis and assignments. J Mol Struct 435:49–58CrossRefGoogle Scholar
  21. 21.
    Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7:4848–4876CrossRefGoogle Scholar
  22. 22.
    Edwards HGM, Chalmers JM (eds) (2005) Raman spectroscopy in archaeology and art history. Royal Society of Chemistry, CambridgeGoogle Scholar
  23. 23.
    Vandenabeele P (2004) Raman spectroscopy in art and archaeology. J Raman Spectrosc 35:607–609CrossRefGoogle Scholar
  24. 24.
    Bellot-Gurlet L, Pages-Camagna S, Coupry C (2006) Raman spectroscopy in art and archaeology. J Raman Spectrosc 37:962–965CrossRefGoogle Scholar
  25. 25.
    Baraldi P, Tinti A (2008) Raman spectroscopy in art and archaeology. J Raman Spectrosc 39:963–965CrossRefGoogle Scholar
  26. 26.
    Madariaga JM (2010) Raman spectroscopy in art and archaeology. J Raman Spectrosc 41:1389–1393CrossRefGoogle Scholar
  27. 27.
    Bersani D, Madariaga JM (2012) Applications of Raman spectroscopy in art and archaeology. J Raman Spectrosc 43:1523–1528CrossRefGoogle Scholar
  28. 28.
    Ropret P, Madariaga JM (2014) Applications of Raman spectroscopy in art and archaeology. J Raman Spectrosc 45:985–992CrossRefGoogle Scholar
  29. 29.
    Łydżba-Kopczyńska B, Madariaga JM (2016) Applications of Raman spectroscopy in art and archaeology. J Raman Spectrosc 47:1404–1407CrossRefGoogle Scholar
  30. 30.
    Bohning JJ, Misra TN, Choudhury M (1998) The Raman effect. American Chemical Society, WashingtonGoogle Scholar
  31. 31.
    Delhaye M, Dhamelincourt P (1975) Raman microprobe and microscope with laser excitation. J Raman Spectrosc 3:33–43CrossRefGoogle Scholar
  32. 32.
    Analytical Methods Committee AN 67 (2015) Raman spectroscopy in cultural heritage: Background paper. Anal Methods 7:4844–4847Google Scholar
  33. 33.
    Edwards HGM, Vandenabeele P (2012) Analytical archaeometry. Selected Topics. The Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  34. 34.
    Vandenabeele P, Weis TL, Grant ER, Moens LJ (2004) A new instrument adapted to in situ Raman analysis of objects of art. Anal Bioanal Chem 379:137–142PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Jehlička J, Culka A, Bersani D, Vandenabeele P (2017) Comparison of seven portable Raman spectrometers: beryl as a case study. J Raman Spectrosc 48:1289–1299CrossRefGoogle Scholar
  36. 36.
    Guineau B (1984) Microanalysis of painted manuscripts and of colored archaeological materials by Raman laser microprobe. J Forensic Sci 29:471–485CrossRefGoogle Scholar
  37. 37.
    Guineau BGV (1984) Analyse non destructive des pigments par microsonde Raman laser: exemples de l’azurite et de la malachite. Stud Conserv 29:35–41Google Scholar
  38. 38.
    Delhaye M, Guineau B, Vezin J, Coupry C (1985) La microsonde Raman au secours des oeuvres d’art. Mesures 11:119–124Google Scholar
  39. 39.
    Guineau B (1987) Non-destructive analysis of organic pigments and dyes using raman microprobe, microfluorimeter rand absorption microspectrophotometer. Stud Conserv 34:38–40Google Scholar
  40. 40.
    Edwards HGM, Farwell DW, Seaward MRD (1991) Raman spectra of oxalates in lichen encrustations on Renaissance frescoes. Spectrochim Acta A 47:1531–1539CrossRefGoogle Scholar
  41. 41.
    Edwards HGM, Farwell DW, Jenkins R, Seaward MRD (1992) Vibrational Raman spectroscopic studies of calcium oxalate monohydrate and dihydrate in lichen encrustations on renaissance frescoes. J Raman Spectrosc 23:185–189CrossRefGoogle Scholar
  42. 42.
    Russ J, Palma RL, Loyd DH, Farwell DWEH (1995) Analysis of the rock accretions in the Lower Pecos Region of SW Texas. Geoarchaeology 10:43–63CrossRefGoogle Scholar
  43. 43.
    Williams AC, Edwards HGM, Barry BW (1995) The ‘Iceman’: molecular structure of 5200-year-old skin characterised by raman spectroscopy and electron microscopy. BBA-Protein Struct Mol 1246:98–105CrossRefGoogle Scholar
  44. 44.
    Best SP, Clark RJH, Withnall R (1992) Non-destructive pigment analysis of artefacts by Raman microscopy. Endeavour 16:66–73CrossRefGoogle Scholar
  45. 45.
    Clark RJH, Cooksey CJ, Daniels MAMWR (1993) Indigo, woad, and Tyrian purple: important vat dyes from antiquity to the present. Endeavour 17:191–199CrossRefGoogle Scholar
  46. 46.
    Ciomartan DA, Clark RJH (1996) Raman microscopy applied to the analysis of the pigments used in two persian manuscripts. J Braz Chem Soc 7:395–402CrossRefGoogle Scholar
  47. 47.
    Burgio L, Ciomartan DA, Clark RJH (1997) Pigment identification on medieval manuscripts, paintings and other artefacts by Raman microscopy: applications to the study of three German manuscripts. J Mol Struct 405:1–11CrossRefGoogle Scholar
  48. 48.
    Burgio L, Ciomartan DA, Clark RJH (1997) Raman microscopy study of the pigments on three illuminated mediaeval latin manuscripts. J Raman Spectrosc 28(7):9–83Google Scholar
  49. 49.
    Coupry C, Lautié A, Revault M, Dufilho J (1994) Contribution of Raman spectroscopy to art and history. J Raman Spectrosc 25:89–94CrossRefGoogle Scholar
  50. 50.
    Turrell G (1996) Raman microscopy developments and applications. Elsevier, Academic Press, AmsterdamGoogle Scholar
  51. 51.
    Pagès-Camagna S, Colinart S, Coupry C (1999) Fabrication processes of archaeological Egyptian blue and green pigments enlightened by Raman microscopy and scanning electron microscopy. J Raman Spectrosc 30:313–317CrossRefGoogle Scholar
  52. 52.
    Bruni S, Cariati F, Cl Bianchi, Zanardini E, Sorlini C (1995) Spectroscopic investigation of red stains affecting the Carrara marblefaçade of the Certosa of Pavia. Archaeometry 37:249–255CrossRefGoogle Scholar
  53. 53.
    Trentelman K, Stodulski L, Pavlosky M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 68:1755–1761CrossRefGoogle Scholar
  54. 54.
    Barone G, Crupi V, Galli S, Majolino D, Migliardo P, Venuti V (2003) Spectroscopic investigation of Greek ceramic artefacts. J Mol Struct 651–653:449–458CrossRefGoogle Scholar
  55. 55.
    Bruno P, Caselli M, Curri ML, Favia P, Laganara C, Traini A (1997) Surface examination of red painting on medieval pottery from the South of Italy. Anal Chim 87:539–553Google Scholar
  56. 56.
    Lofrumento C, Zoppi A, Castellucci EM (2004) Micro-Raman spectroscopy of ancient ceramics: a study of Frenchsigillata wares. J Raman Spectrosc 35:650–655CrossRefGoogle Scholar
  57. 57.
    Colomban P, Treppoz F (2001) Identification and differentiation of ancient and modern European porcelains by Raman macro- and micro-spectroscopy. J Raman Spectrosc 32:93–102CrossRefGoogle Scholar
  58. 58.
    Colomban P, Sagon G, Faurel X (2001) Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. J Raman Spectrosc 32:351–360CrossRefGoogle Scholar
  59. 59.
    Mioč UB, Colomban P, Sagon G, Stojanović M, Rosić A (2004) Ochre decor and cinnabar residues in Neolithic pottery from Vinča, Serbia. J Raman Spectrosc 35:843–846CrossRefGoogle Scholar
  60. 60.
    Smith DC, Vernioles JD (1997) The temperature of fusion of a celtic vitrified fort: a feasibility study of the application of the Raman microprobe to the non-destructive characterization of unprepared archaeological objects. J Raman Spectrosc 28:195–197CrossRefGoogle Scholar
  61. 61.
    Smith DC, Gendron F (1997) Archaeometric application of the Raman microprobe to the non-destructive identification of two pre-columbian ceremonial polished ‘greenstone’ axe-heads from Mesoamerica. J Raman Spectrosc 28:731–738CrossRefGoogle Scholar
  62. 62.
    Gendron F, Smith DC, Gendron-Badou A (2002) Discovery of jadeite-jade in Guatemala confirmed by non-destructive Raman microscopy. J Archaeol Sci 29:837–851CrossRefGoogle Scholar
  63. 63.
    Parras D, Vandenabeele P, Sánchez A, Montejo M, Moens L, Ramos N (2010) Micro-Raman spectroscopy of decorated pottery from the Iberian archaeological site of puente tablas. J Raman Spectrosc 41:68–73CrossRefGoogle Scholar
  64. 64.
    Bersani D, Lottici PP, Virgenti S, Sodo A, Malvestuto G, Botti A, Salvioli-Mariani E, Tribaudino M, Ospitali F, Catarsi M (2010) Multi-technique investigation of archaeological pottery from Parma (Italy). J Raman Spectrosc 41:1556–1561CrossRefGoogle Scholar
  65. 65.
    Colomban P (2013) The destructive/non-destructive identification of enameled pottery, glass artifacts and associated pigments—a brief overview. Arts 2:77–110CrossRefGoogle Scholar
  66. 66.
    Medeghini L, Lottici PP, De Vito C, Mignardi S, Bersani D (2014) Micro-Raman spectroscopy and ancient ceramics: applications and problems. J Raman Spectrosc 45:1244–1250CrossRefGoogle Scholar
  67. 67.
    De Benedetto GE, Nicolì S, Pennetta A, Rizzo D, Sabbatini L, Mangone A (2011) An integrated spectroscopic approach to investigate pigments and engobes on pre-Roman pottery. J Raman Spectrosc 42:1317–1323CrossRefGoogle Scholar
  68. 68.
    De Vito C, Medeghini L, Mignardi S, Ballirano P, Peyronel L (2015) Technological fingerprints of the Early Bronze Age clay figurines from Tell Mardikh-Ebla (Syria). J Eur Ceram Soc 35:3743–3754CrossRefGoogle Scholar
  69. 69.
    Edwards HGM (1998) Raman spectroscopy of fresco fragment substrates. Asian J Phys 7:383–389Google Scholar
  70. 70.
    Edwards HGM, Farwell DW, Newton EM, Perez FR, Edwards HGM, Farwell DW, Newton EM, Perez FR (1999) Minium; FT-Raman non-destructive analysis applied to an historical controversy. Analyst 124:1323–1326CrossRefGoogle Scholar
  71. 71.
    Edwards HGM, Farwell DW, Rull Perez F, Jorge Villar S (1999) Spanish mediaeval frescoes at Basconcillos del Tozo: a fourier transform Raman spectroscopic study. J Raman Spectrosc 30:307–311CrossRefGoogle Scholar
  72. 72.
    Edwards HGM, Farwell DW, Rull Perez F, Jorge Villar S (1999) Spanish mediaeval frescoes at Basconcillos del Tozo: a fourier transform Raman spectroscopic study. J Raman Spectrosc 30:307–311CrossRefGoogle Scholar
  73. 73.
    Bersani D, Antonioli G, Lottici PP, Casoli A (2003) Raman microspectrometric investigation of wall paintings in S. Giovanni Evangelista Abbey in Parma: a comparison between two artists of the 16th century. Spectrochimica Acta A 59:2409–2417CrossRefGoogle Scholar
  74. 74.
    Bersani D, Paolo Lottici P, Antonioli G, Campani E, Casoli A, Violante C (2004) Pigments and binders in the wall paintings of Santa Maria della Steccata in Parma(Italy): the ultimate technique of Parmigianino. J Raman Spectrosc 35:694–703CrossRefGoogle Scholar
  75. 75.
    Baraldi P, Bonazzi A, Giordani N, Paccagnella F, Zannini P (2006) Analytical characterization of Roman plasters of the ‘Domus farini’ in Modena. Archaeometry 48:481–499CrossRefGoogle Scholar
  76. 76.
    Mazzeo R, Baraldi P, Lujàn R, Fagnano C (2004) Characterization of mural painting pigments from the Thubchen Lakhang temple in Lo Manthang, Nepal. J Raman Spectrosc 35:678–685CrossRefGoogle Scholar
  77. 77.
    Aliatis I, Bersani D, Campani E, Casoli A, Lottici PP, Mantovan S, Marino IG (2010) Pigments used in Roman wall paintings in the Vesuvian area. J Raman Spectrosc 41:1537–1542CrossRefGoogle Scholar
  78. 78.
    Maguregui M, Knuutinen U, Castro K, Madariaga JM (2010) Raman spectroscopy as a tool to diagnose the impact and conservation stateof Pompeian second and fourth style wall paintings exposed to diverseenvironments (House of Marcus Lucretius). J Raman Spectrosc 41:1400–1409CrossRefGoogle Scholar
  79. 79.
    Madariaga JM, Maguregui M, De Vallejuelo SFO, Knuutinen U, Castro K, Martinez-Arkarazo I, Giakoumaki A, Pitarch A (2014) In situ analysis with portable Raman and ED-XRF spectrometers for the diagnosis of the formation of efflorescence on walls and wall paintings of the Insula IX 3 (Pompeii, Italy). J Raman Spectrosc 45:1059–1067CrossRefGoogle Scholar
  80. 80.
    Madariaga JM, Maguregui M, Castro K, Knuutinen U, Martínez-Arkarazo I (2016) Portable Raman, DRIFTS, and XRF analysis to diagnose the conservation state of two wall painting panels from pompeii deposited in the Naples National Archaeological Museum (Italy). Appl Spectrosc 70:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Prieto-Taboada N, Fdez-Ortiz De Vallejuelo S, Veneranda M, Marcaida I, Morillas H, Maguregui M, Castro K, De Carolis E, Osanna M, Madariaga JM (2018) Study of the soluble salts formation in a recently restored house of Pompeii by in-situ Raman spectroscopy. Sci Rep 8:1613PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Smith DC, Bouchard M, Lorblanchet M (1999) An initial Raman microscopic investigation of prehistoric rock art in caves of the Quercy District, S.W., France. J Raman Spectrosc 30:347–354CrossRefGoogle Scholar
  83. 83.
    Edwards HGM, Drummond L, Russ J (1999) Fourier transform Raman spectroscopic study of prehistoric rock paintings from the Big Bend region, Texas. J Raman Spectrosc 30:421–428CrossRefGoogle Scholar
  84. 84.
    Hernanz A, M. Gavira-Vallejo J don J, Ruiz-Lopez F (2006) Introduction to Raman microscopy of prehistoric rockpaintings from the Sierra de las Cuerdas, Cuenca, Spain. J Raman Spectrosc 37:1054–1062CrossRefGoogle Scholar
  85. 85.
    Hernanz A, Gavira-Vallejo JM, Ruiz-López JF (2007) Calcium oxalates and prehistoric paintings. the usefulness of these biomaterials. J Optoelectron Adv Mater 9:512–521Google Scholar
  86. 86.
    Hernanz A, Gavira-Vallejo JM, Ruiz-Lopez JF, Edwards HGM (2008) A comprehensive micro-Raman spectroscopic study of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. J Raman Spectrosc 972–984CrossRefGoogle Scholar
  87. 87.
    Hernanz A, Ruiz-López JF, Gavira-Vallejo JM, Martin S, Gavrilenko E (2010) Raman microscopy of prehistoric rock paintings from the Hoz de Vicente, Minglanilla, Cuenca, Spain. J Raman Spectrosc 41:1394–1399CrossRefGoogle Scholar
  88. 88.
    Hernanz A, Gavira-Vallejo JM, Ruiz-Lõpez JF, Martin S, Maroto-Valiente Á, De Balbín-Behrmann R, Menéndez M, Alcolea-González JJ (2012) Spectroscopy of Palaeolithic rock paintings from the Tito Bustillo and El Buxu Caves, Asturias, Spain. J Raman Spectrosc 43:1644–1650CrossRefGoogle Scholar
  89. 89.
    Colomban P, Slodczyk A (2009) Raman intensity: an important tool to study the structure and phase transitions of amorphous/crystalline materials. Opt Mater (Amst) 31:1759–1763CrossRefGoogle Scholar
  90. 90.
    Katsaros T, Ganetsos T (2012) Raman characterization of gemstones from the collection of the Byzantine & Christian Museum. Archaeology 1:7–14Google Scholar
  91. 91.
    Košařová V, Hradil D, Hradilová J, Čermáková Z, Němec I, Schreiner M (2016) The efficiency of micro-Raman spectroscopy in the analysis of complicated mixtures in modern paints: Munch’s and Kupka’s paintings under study. Spectrochim Acta A 156:36–46CrossRefGoogle Scholar
  92. 92.
    Bersani D, Lottici PP (2010) Applications of Raman spectroscopy to gemology. Anal Bioanal Chem 397:2631–2646PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ermakov NP (1965) Research on the nature of mineral-forming solutions: with special reference to data from fluid inclusions. Oxford, Pergamon Press Ltd., OxfordGoogle Scholar
  94. 94.
    Roedder E (1984) Fluid inclusions. In: Ribbe PH (ed) Reviews in mineralogy and geochemistry. Mineralogical Society of America, p 644Google Scholar
  95. 95.
    Łydzba-Kopczyńska B, Zych E, August C, Rusek G, Pankiewicz A (2008) Analytical techniques in provenance determination of archaeological objects from Lower Silesia. J Mol Struct 887:41–47CrossRefGoogle Scholar
  96. 96.
    Kolesov BA, Geiger CA (1998) Raman spectra of silicate garnets. Phys Chem Miner 25:142–151CrossRefGoogle Scholar
  97. 97.
    Barone G, Bersani D, Lottici PP, Mazzoleni P, Raneri S, Longobardo U (2016) Red gemstone characterization by micro-Raman spectroscopy: the case of rubies and their imitations. J Raman Spectrosc 47:1534–1539CrossRefGoogle Scholar
  98. 98.
    Reiche I, Pages-Camagna S, Lambacher L (2004) In situ Raman spectroscopic investigations of the adorning gemstones on the reliquary Heinrich’s Cross from the treasury of Basel Cathedral. J Raman Spectrosc 35:719–725CrossRefGoogle Scholar
  99. 99.
    Ziemann MA (2006) In situ micro-Raman spectroscopy on minerals on-site in the Grotto Hall of the New Palace, Park Sanssouci, in Potsdam. J Raman Spectrosc 37:1019–1025CrossRefGoogle Scholar
  100. 100.
    Coccato A, Bersani D, Coudray A, Sanyova J, Moens L, Vandenabeele P (2016) Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. J Raman Spectrosc 47:1429–1443CrossRefGoogle Scholar
  101. 101.
    Bersani D, Lottici PP (2016) Raman spectroscopy of minerals and mineral pigments in archaeometry. J Raman Spectrosc 47:499–530CrossRefGoogle Scholar
  102. 102.
    Centeno SA, Llado Buisan V, Ropret P (2007) Raman study of synthetic organic pigments and dyes in early lithographic inks (1890–1920). J Raman Spectrosc 37:111–1118Google Scholar
  103. 103.
    Daher C, Bellot-Gurlet L, Le Hô AS, Paris C, Regert M (2013) Advanced discriminating criteria for natural organic substances of cultural heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures. Talanta 115:540–547PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Daher C, Pimenta V, Bellot-Gurlet L (2014) Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: methodological approach. Talanta 129:336–345PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Klisinska A, Łydżba-Kopczyńska B, Czarnecka M, Koźlecki T, del Hoyo Mélendez J, Mendys A, Kłosowska‐Klechowska, Anna Obarzanowski M, Frączek P (2018) Raman spectroscopy as a powerful technique for the identification of polymers used in cast sculptures from museum collections. J Raman Spectrosc. (First published: 08 June 2018)
  106. 106.
    Van Elslande E, Lecomte S, Le Ho A-S (2008) Micro-Raman spectroscopy (MRS) and surface-enhanced Raman scattering (SERS) on organic colourants in archaeological pigments. J Raman Spectrosc 39:10001–11006Google Scholar
  107. 107.
    Melo MJ, Nabais P, Guimarães M, Araújo R, Castro R, Oliveira MC, Whitworth I (2016) Organic dyes in illuminated manuscripts: a unique cultural and historic record. Philos Trans R Soc A Math Phys Eng Sci 374:20160050CrossRefGoogle Scholar
  108. 108.
    Pozzi F, Leona M (2016) Surface-enhanced Raman spectroscopy in art and archaeology. J Raman Spectrosc 47:67–77CrossRefGoogle Scholar
  109. 109.
    Kiefer W, Mazzolini AP, Stoddart PR (2007) Recent advances in linear and nonlinear Raman spectroscopy I. J Raman Spectrosc 38:1538–1553CrossRefGoogle Scholar
  110. 110.
    Cappa F, Pintus V, Ofner J, Schreiner M, Lendl B (2015) Raman imaging for cultural heritage investigations. In: 8th international conference on advanced vibrational spectroscopy, Wien, 7–17th July 2015, pp 246–247Google Scholar
  111. 111.
    Antunes V, Candeias A, Mirão J, Carvalho ML, Dias CB, Manhita A, Cardoso A, Francisco MJ, Lauw A, Manso M (2018) Analytical characterization of the palette and painting techniques of Jorge Afonso, the great 16th century Master of Lisbon painting workshop. Spectrochim Acta A 193:264–275CrossRefGoogle Scholar
  112. 112.
    Christiansen MB, Sørensen MA, Sanyova J, Bendix J, Simonsen KP (2017) Characterisation of the rare cadmium chromate pigment in a 19th century tube colour by Raman, FTIR, X-ray and EPR. Spectrochim Acta A 208–214CrossRefGoogle Scholar
  113. 113.
    Basso E, Invernizzi C, Malagodi M, La Russa MF, Bersani D, Lottici PP (2014) Characterization of colorants and opacifiers in roman glass mosaic tesserae through spectroscopic and spectrometric techniques. J Raman Spectrosc 45:238–245CrossRefGoogle Scholar
  114. 114.
    Casadio F, Bezúr A, Fiedler I, Muir K, Trad T, MacCagnola S (2012) Pablo Picasso to Jasper Johns: a Raman study of cobalt-based synthetic inorganic pigments. J Raman Spectrosc 43:1761–1771CrossRefGoogle Scholar
  115. 115.
    Otero V, Sanches D, Montagner C, Vilarigues M, Carlyle L, Lopes JA, Melo MJ (2014) Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art. J Raman Spectrosc 45:1197–1206CrossRefGoogle Scholar
  116. 116.
    Carlesi S, Ricci M, Cucci C, Lofrumento C, Picollo M, Becucci M (2016) Multivariate analysis of combined reflectance FT-NIR and micro-Raman spectra on oil-paint models. Microchem J 124:703–711CrossRefGoogle Scholar
  117. 117.
    Cheilakou E, Troullinos M, Koui M (2014) Identification of pigments on Byzantine wall paintings from Crete (14th century AD) using non-invasive fiber optics diffuse reflectance spectroscopy (FORS). J Archaeol Sci 41:541–555CrossRefGoogle Scholar
  118. 118.
    Bronzato M, Zoleo A, Biondi B, Centeno SA (2016) An insight into the metal coordination and spectroscopic properties of artistic Fe and Fe/Cu logwood inks. Spectrochim Acta A 153:522–529CrossRefGoogle Scholar
  119. 119.
    Cucci C, Bartolozzi G, De Vita M, Marchiafava V, Picollo M, Casadio F (2016) The colors of Keith Haring: a spectroscopic study on the materials of the mural painting Tuttomondo and on reference contemporary outdoor paints. Appl Spectrosc 70:186–196PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Sirat C (2002) Hebrew Manuscripts of the Middle Ages. Cambridge University Press, CambridgeGoogle Scholar
  121. 121.
    Gruchalska A, Rogulska A, Rusek G, Łydzba-Kopczyńska BI (2010) Spectroscopic studies of atypically illuminated medieval Hebrew bible in comparison to a XV century western manuscript. AIP Conf Proc 1267:238–239CrossRefGoogle Scholar
  122. 122.
    Łydżba-Kopczyńska B, Rogulska A (2016) Decoration techniques in mediaeval Hebrew Bibles: non-invasive XRF and μ-Raman analysis. In: 6th meeting X-ray and other techniques in investigations of the objects of cultural heritage, Kraków, 19–21 May 2016, pp 238–239Google Scholar
  123. 123.
    Ray E (1999) Sofer: the story of a Torah Scroll. Torah Aura Productions, Los AngelesGoogle Scholar
  124. 124.
    Burgio L, Clark RJH, Firth S (2001) Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. Analyst 126:222–227PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Conservation KP offers RM for A.
  126. 126.
    Eastaugh N, Walsh V, Siddall R, Chaplin T (2004) Optical microscopy of historical pigments. Taylor & Francis, LondonGoogle Scholar
  127. 127.
    Łydzba-Kopczyńska BI, Gediga B, Chojcan J, Sachanbiński M (2012) Provenance investigations of amber jewelry excavated in Lower Silesia (Poland) and dated back to Early Iron Age. J Raman Spectrosc 43:1839–1844CrossRefGoogle Scholar
  128. 128.
    Angelini I, Bellintani P (2005) Archaeological ambers from northern Italy: an FTIR-DRIFT study of provenance by comparison with the geological amber database. Archaeometry 47:441–454CrossRefGoogle Scholar
  129. 129.
    Guiliano M, Asia L, Onoratini G, Mille G (2007) Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers. Spectrochim Acta A 67:1407–1411CrossRefGoogle Scholar
  130. 130.
    Seger H (1930) Der Bernsteinfund von Hartlieb bei Breslau. Altschlesien 3:171–184Google Scholar
  131. 131.
    Nowothnig W (1937) Der Bernsteinhandelsplatz von Breslau-Hartlieb. Altschlesische Blätter. Altschlesische, Blätter, pp 48–51Google Scholar
  132. 132.
    Łydżba-Kopczyńska B, Krzywiecka M, Chojcan J, Madera PS (2015) Wrocław-Partynice amber depots—the application of the comprehensive spectral database of succinate and fossil and subfossil resins. In: 8th Congress on Application of Raman Spectroscopy in Art and Archaeology Wroclaw, 1–5 Sept 2015, pp 146–147Google Scholar
  133. 133.
    Niedźwiedzki R (2014) Gigantyczny bursztynowy “skarb” partynicki z Wrocławia. In: Amberif 2014. Bursztyn. Gemmologia – Muzealnictwo – Archeologia. Gdańsk-Warszawa, 23–26Google Scholar
  134. 134.
    Brody RH, Edwards HGM, Pollard AM (2001) A study of amber and copal samples using FT-Raman. Spectrochim Acta A 57:1325–1338CrossRefGoogle Scholar
  135. 135.
    Peris-Díaz MD, Łydżba-Kopczyńska B, Sentandreu E (2018) Raman spectroscopy coupled to chemometrics to discriminate provenance and geological age of amber. J Raman Spectrosc 49:842–851CrossRefGoogle Scholar
  136. 136.
    Łydżba-Kopczyńska B, Białek E, Rusek G, Weker W (2011) Badania pochodzenia obiektów bursztynowych poddanych zabiegom konserwatorskim. In: XI konferencja Analiza chemiczna w ochronie zabytków, Warszawa 1–2 Dec 2011, p. 33Google Scholar
  137. 137.
    Navas N, Romero-Pastor J, Manzano E, Cardell C (2010) Raman spectroscopic discrimination of pigments and tempera paint model samples by principal component analysis on first-derivative spectra. J Raman Spectrosc 41:1486–1493CrossRefGoogle Scholar
  138. 138.
    Doherty B, Vagnini M, Dufourmantelle K, Sgamellotti A, Brunetti B, Miliani C (2014) A vibrational spectroscopic and principal component analysis of triarylmethane dyes by comparative laboratory and portable instrumentation. Spectrochim Acta A 121:292–305CrossRefGoogle Scholar
  139. 139.
    Otero V, Sanches D, Montagner C, Vilarigues M, Carlyle L, Lopes JA, Melo MJ (2014) Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art. J Raman Spectrosc 45:1197–1206CrossRefGoogle Scholar
  140. 140.
    Delaney JK, Ricciardi P, Deming Glinsman L, Facin M, Thoury M, Palmet M, René de la Rie E (2014) Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluores-cence to map and identify pigments in illuminated manuscripts. Stud Conserv 59:91–101CrossRefGoogle Scholar
  141. 141.
    Montagner C, Bacci M, Bracci S, Freeman R, Picollo M (2011) Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pat-tern-card coloured papers. Spectrochim Acta A 79:1669–1680CrossRefGoogle Scholar
  142. 142.
    Depuis G, Menu M (2006) Quantitative characterisation of pigment mixtures used in art by fiber-optics diffuse-reflectance spectroscopy. Appl Phys A 83:469–474CrossRefGoogle Scholar
  143. 143.
    FORS (2016) Fiber optics reflectance spectra (FORS) of pictorial materials in the 270–1700 nm range. Accessed 16 June 2018
  144. 144.
    Bacci M, Picollo M, Trumpy G, Tsukada M, Kunzelman D (2007) Non-invasive identification of white pigments on 20th century oil paintings by using fiber optic reflectance. Spectrosc JAIC 46:27–37Google Scholar
  145. 145.
    Cosentino A (2014) FORS spectral database of historical pigments in different binders. e-Conservation J 2: 57–68Google Scholar
  146. 146.
    Cavaleria T, Giovagnolia A, Nervoa M (2013) Pigments and mixtures identification by Visible Reflectance Spectroscopy. Procedia Chem 8:45–54CrossRefGoogle Scholar
  147. 147.
    Some examples for Textiles (2014) ISO 105-B01:2014 Textiles—tests for colour fastness—part B01: colour fastness to light: daylight; ISO 105-B02:2014, Textiles—tests for colour fastness—part B02: colour fastness to artificial light: Xenon arc fading lampGoogle Scholar
  148. 148.
    Whitmore PM, Pan X, Bailie C (1999) Predicting the fading of objects: identification of fugitive colorants through direct nondestructive lightfastness measurements. JAIC 38:395–409Google Scholar
  149. 149.
    Pesme C, Lerwill A, Beltran V, Druzik J (2016) Development of contact portable microfade tester to assess light sensitivity of col-lection items. J Am Inst Conserv 55:117–137CrossRefGoogle Scholar
  150. 150.
    Ashley-Smith J, Derbyshire A, Pretzel B (2002) The continuing development of a practical lighting policy for works of art on paper and other object types at the Victoria and Albert Museum. In: ICOM Committee for Conservation, preprints, 13th triennial meeting, Rio De Janeiro, Brazil. ICOM, Paris, pp 3–8Google Scholar
  151. 151.
    Feller RL (1979) Use of the international standards organization’s blue wool standards for exposure to light. In: AIC preprints of papers presented at the 7th annual meeting, Toronto, CanadaGoogle Scholar
  152. 152.
    Michalski S (1987) Damage to museum objects by visible radiation (light) and ultraviolet radiation (UV). In: Lighting in museums, galleries and historic houses. Museums Association, UKIC, and Group of Designers and Interpreters for Museums, LondonGoogle Scholar
  153. 153.
    Thompson G (2013) The museum environment, 6th edn. Elsevier, AmsterdamGoogle Scholar
  154. 154.
    Colby KM (1992) A suggested exhibition/exposure policy for works of art on paper. J Int Inst Conserv Can Gr 17:3–11Google Scholar
  155. 155.
    Roscoe HE (1865) The Bakerian Lecture: on a method of meteorological registration of the chemical action of total daylight. Philos Trans R Soc L 155:605–631CrossRefGoogle Scholar
  156. 156.
    del Hoyo-Meléndez JM, Mecklenburg MF (2011) An investigation of the reciprocity principle of light exposures using micro-fading spectrometry. Spectrosc Lett 44:52–62CrossRefGoogle Scholar
  157. 157.
    Liang H, Lange R, Lucian A, Hyndes P, Townsend J., Hackney S (2011) Development of portable microfading spectrometers for measurement of light sensitivity of materials. In: International Council of Museums, Committee for Conservation (ICOM-CC) triennial conference, LisbonGoogle Scholar
  158. 158.
    Bacci M, Cucci C, Mencaglia AA MA& PS (2004) Calibration and use of photosensitive materials for light monitoring in museums: blue wool standard 1 as a case study. Stud Conserv 49:85–98Google Scholar
  159. 159.
    Lerwill A, Townsend JH, Thomas J, Hackney S, Caspers C, Liang H (2014) Photochemical colour change for traditional watercolour pigments in low oxygen levels. Stud Conserv 60:15–32CrossRefGoogle Scholar
  160. 160.
    del Hoyo-Meléndez JM, Mecklenburg MF (2011) The use of micro-fading spectrometry to evaluate the light fastness of materials in oxygen-free environments. Spectrosc Lett 44:113–121CrossRefGoogle Scholar
  161. 161.
    Łojewski T, Thomas J, Gołąb R, Kawałko J, Łojewska J (2011) Light ageing with simultaneous colorimetry via fiber optics reflection spectrometry. Rev Sci Instrum 82:076102PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Morales Merino C, Röhrs S, Meyer F, Marten S, Reiche I (2016) Micro-fading testing on modern ink based pens and contemporary drawings from the Kupferstichkabinett Berlin. Berliner Beiträge zur Archäometrie, Kunsttechnologie und Konserv 24:89–102Google Scholar
  163. 163.
    del Hoyo-Meléndez JM, Mecklenburg M (2012) Micro-fading spectrometry: a tool for real-time assessment of the light-fastness of dye/textile systems. Fibers Polym 13:1079–1085CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tomasz Łojewski
    • 1
    Email author
  • Barbara Łydżba-Kopczyńska
    • 2
  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland
  2. 2.Faculty of ChemistryUniversity of WroclawWroclawPoland

Personalised recommendations