Advertisement

Application of Spectroscopic Methods in the Studies of Polysiloxanes, Cubic  Oligomeric Silsesquioxanes, and Spherosilicates Modified by Organic Functional Groups via Hydrosilylation

  • Aleksandra Chechelska-Noworyta
  • Jan Mrówka
  • Maria Owińska
  • Magdalena Hasik
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)

Abstract

Organosilicon compounds whose structure is based on the stable Si–O bonds show high chemical and thermal stability. Incorporation of organic groups into their molecules results in the materials which combine the properties of the Si–O skeleton and those of organic moieties. Hydrosilylation, i.e., catalytic addition of Si–H groups to carbon–carbon double bonds, is a convenient route to prepare organofunctional silicon compounds. In this chapter, the work that has been done since the year 2000 on functionalization via hydrosilylation of polysiloxanes, cubic  oligomeric silsesquioxanes, and spherosilicates, i.e., the main classes of organosilicon compounds containing Si–O bonds, is reviewed. The emphasis is put on spectroscopic investigations of the functionalization process or its products.

References

  1. 1.
    Noll W (1968) Chemistry and technology of silicones. Academic Press, pp 1–9Google Scholar
  2. 2.
    Baney RH, Cao X (2000) Polysilsesquioxanes. In: Jones RG, Ando W, Chojnowski J (eds) Silicon-containing polymers. Kluwer Academic Publishers, pp 157–184Google Scholar
  3. 3.
    Kuo ACM (1999) Poly(dimethylsiloxane). In: Polymer data handbook. Oxford University Press, Inc., pp 411–435Google Scholar
  4. 4.
    Graiver D, Fearon G (2000) Polysiloxanes: directions of applications and perspectives. In: Jones RG, Ando W, Chojnowski J (eds) Silicon-containing polymers. Kluwer Academic Publishers, pp 233–243Google Scholar
  5. 5.
    Zhou Q, Yan S, Han CC, Xie P, Zhang R (2008) Promising functional materials based on ladder polysiloxanes. Adv Mater 20:2970–2976CrossRefGoogle Scholar
  6. 6.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRefGoogle Scholar
  7. 7.
    Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. Adv Polym Sci 201:225–296CrossRefGoogle Scholar
  8. 8.
    Kuo SW, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696CrossRefGoogle Scholar
  9. 9.
    Zhang W, Müller AHE (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsesquioxane (POSS). Prog Polym Sci 38:1121–1162CrossRefGoogle Scholar
  10. 10.
    Marciniec B, Guliński J, Urbaniak W, Kornetka ZW (1992) Comprehensive handbook on hydrosilylation. Pergamon PressGoogle Scholar
  11. 11.
    Boutevin B, Guida-Pietrasanta F, Ratsimihety A (2000) Side group modified polysiloxanes. In: Jones RG, Ando W, Chojnowski J (ed) Silicon-containing polymers. Kluwer Academic Publishers, pp 79–112Google Scholar
  12. 12.
    Nyczyk A, Paluszkiewicz C, Pyda A, Hasik M (2011) Preceramic polysiloxane networks obtained by hydrosilylation of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane. Spectrochim Acta A 79:801–808CrossRefGoogle Scholar
  13. 13.
    Nyczyk A, Paluszkiewicz C, Hasik M, Cypryk M, Pospiech P (2012) Cross-linking of linear vinylpolysiloxanes by hydrosilylation—FTIR spectroscopic studies. Vib Spectrosc 59:1–8CrossRefGoogle Scholar
  14. 14.
    Nyczyk-Malinowska A, Wójcik-Bania M, Gumuła T, Hasik M, Cypryk M, Olejniczak Z (2014) New precursors to SiCO ceramics derived from linear poly(vinylsiloxanes) of regular chain composition. J Europ Ceram Soc 34:889–902CrossRefGoogle Scholar
  15. 15.
    Olejarka J, Łącz A, Olejniczak Z, Hasik M (2018) Non-porous and porous materials prepared by cross-linking of polyhydromethylsiloxane with silazane compounds. Eur Polym J 99:150–164CrossRefGoogle Scholar
  16. 16.
    Sommer LH, Pietrusza EW, Whitmore FC (1947) Peroxide-catalyzed addition of trichlorosilane to 1-octene. J Am Chem Soc 69:188–188CrossRefGoogle Scholar
  17. 17.
    Marciniec B, Maciejewski H, Pawluć P (2017) Hydrosilylation of carbon–carbon multiple bonds—application in synthesis and materials science. In: Lee VY (ed) Organosilicon compounds, vol 2. Experiment (physico-chemical studies) and applications. Elsevier, pp 169–217Google Scholar
  18. 18.
    Marciniec B, Maciejewski H, Pietraszuk C, Pawluć P (2009) Hydrosilylation: a comprehensive review on recent advances. Springer Science & Business Media BVGoogle Scholar
  19. 19.
    Troegel D, Stohrer J (2011) Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord Chem Rev 255:1440–1459CrossRefGoogle Scholar
  20. 20.
    Speier JL, Webster JA, Barnes GH (1957) The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts. J Am Chem Soc 79:974–979CrossRefGoogle Scholar
  21. 21.
    Karstedt BD (1973) Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes. US 3 775 452Google Scholar
  22. 22.
    Smith AL (1960) Infrared spectra-structure correlations for organosilicon compounds. Spectrochim Acta 16:87–105CrossRefGoogle Scholar
  23. 23.
    Hao X, Jeffery JL, Wilkie JS, Meijs GF, Clayton AB, Watling JD, Ho A, Fernandez V, Acosta C, Yamamoto H, Aly MGM, Parel JM, Hughes TC (2010) Functionalised polysiloxanes as injectable, in situ curable accommodating intraocular lenses. Biomaterials 31:8153–8163PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Maciejewski H, Karasiewicz J, Dutkiewicz A, Dutkiewicz M, Dopierała K, Prochaska K (2014) Synthesis and properties of polysiloxanes containing mixed functional groups. React Funct Polym 83:144–154CrossRefGoogle Scholar
  25. 25.
    Cancouët P, Pernin S, Hélary G, Sauvet G (2000) Functional polysiloxanes. II. Neighboring effect in the hydrosilylation of poly(hydrogenmethylsiloxane-co-dimethylsiloxane)s by allylglycidylether. J Polym Sci A 38:837–845CrossRefGoogle Scholar
  26. 26.
    Taylor RB, Parbhoo B, Fillmore D (1991) Nuclear magnetic resonance spectroscopy. In: Smith AL (ed) The analytical chemistry of silicones. Wiley, pp 347–419Google Scholar
  27. 27.
    Marsmann H (1981) 2Si-NMR spectroscopic results. In: Diehl P, Fluck E, Kosfeld R (eds) NMR basic principles and progress, vol 17. SpringerGoogle Scholar
  28. 28.
    Cai G, Weber WP (2002) Synthesis and chemical modification of poly(divinylsiloxane). Polymer 43:1753–1759CrossRefGoogle Scholar
  29. 29.
    Boehm P, Mondeshki M, Frey H (2012) Polysiloxane-backbone block copolymers in a one-pot synthesis: a silicone platform for facile functionalization. Macromol Rapid Commun 33:1861–1867PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Srividhya M, Madhavan K, Reddy BSR (2006) Synthesis of novel soluble poly(imide-siloxane)s via hydrosilylation: characterization and structure property behavior. Eur Polym J 42:2743–2754CrossRefGoogle Scholar
  31. 31.
    Safa KD, Bahadori A, Tofangdarzadeh S, Nasirtabrizi MH (2008) Trisyl modification of epoxy- and chloromethyl-polysiloxanes. J Iran Chem Soc 5:37–47CrossRefGoogle Scholar
  32. 32.
    Racles C, Cozan V (2011) Synthesis of glucose-modified siloxanes by a simplified procedure. Soft Materials 10:413–425CrossRefGoogle Scholar
  33. 33.
    El-Sukkary MMA, Ismail DA, Rayes SMEl, Saad MA (2013) Synthesis, characterization and surface properties of amino-glycopolysiloxane. J Ind Eng Chem 20:3342–3348CrossRefGoogle Scholar
  34. 34.
    Kowalewska A, Stańczyk WA (2003) Highly thermally resistant UV-curable poly(siloxane)s bearing bulky substituents. Chem Mater 15:2991–2997CrossRefGoogle Scholar
  35. 35.
    Rutnakornpituk M (2005) Modification of epoxy–novolac resins with polysiloxane containing nitrile functional groups: synthesis and characterization. Eur Polym J 41:1043–1052CrossRefGoogle Scholar
  36. 36.
    Min C, Pu Q, Yang L, Fan H (2014) Synthesis, film morphology, and performance on cotton substrates of dodecyl/piperazine functional polysiloxane. J Appl Polym Sci 131:40186CrossRefGoogle Scholar
  37. 37.
    Wang H, Ni T, Li G, Lu Y (2013) Conducting pseudo graft copolymers based on polyaniline and carbonyl-functionalized polysiloxanes: preparation and properties. Synth Met 177:52–59CrossRefGoogle Scholar
  38. 38.
    Lin F, Song M, He Z, Zhang T (2008) Synthesis and structural characterization of methacrylic acid/octadecyl acrylate-graft-poly(methylhydrosiloxane) by hydrosilylation. J Appl Polym Sci 107:3773–3780CrossRefGoogle Scholar
  39. 39.
    Mukbaniani O, Zaikov G, Pirckheliani N, Tatrishvili T, Meladze S (2007) Hydrosilylation and dehydrocondensation reactions of methylhydridesiloxane to acrylic and methacrylic acids. J Appl Polym Sci 103:3243–3252CrossRefGoogle Scholar
  40. 40.
    Pryakhina TA, Shragin DI, Kononevich YN, Vasi’ev GV, Buzin MI, Papkov VS, Muzafarov AM (2015) Synthesis, rheological, and thermal properties of polydimethylsiloxanes modified with long-chain hydrocarbon substituents with polar fragments. Russ Chem Bull Int Ed 64:605–612CrossRefGoogle Scholar
  41. 41.
    Ganicz T, Mizerska U, Moszner M, O’Brien M, Perry R, Stańczyk WA (2004) The effectiveness of rhodium (I), (II) and (III) complexes as catalysts in hydrosilylation of model olefin and polyether with triethoxysilane and poly(dimethylsiloxane-co-methylsiloxane). Appl Catal A 259:49–55CrossRefGoogle Scholar
  42. 42.
    Wang Z, Li R, Chen H, Ma F, Zhang X, Cheng Y, Gu X, Qi Z (2017) Cationic amphiphilic copolymers: synthesis, characterization, self-assembly and drug-loading capacity. Polym Int 66:1199–1205CrossRefGoogle Scholar
  43. 43.
    Pricop L, Hamciuc V, Marcu M, Ioanid A, Alazaroaie S (2005) Graft copolymers polydimethylsiloxane–polyethyleneoxide. Synthesis and characterization. High Perform Polym 17:303–312CrossRefGoogle Scholar
  44. 44.
    Chung DW, Kim TG (2007) Solvent Effect on the hydrosilylation reactions for the synthesis of polydimethylsiloxane grafted with polyoxyethylene catalyzed by Speier’s catalyst. J Ind Eng Chem 13:979–984Google Scholar
  45. 45.
    Chung DW, Kim TG (2007) Study on the effect of platinum catalyst for the synthesis of polydimethylsiloxane grafted with polyoxyethylene. J Ind Eng Chem 7:571–577Google Scholar
  46. 46.
    Chung DW, Lim JC (2009) Study on the effect of structure of polydimethylsiloxane grafted with polyethylene oxide on surface activities. Colloids Surf A 336:35–40CrossRefGoogle Scholar
  47. 47.
    Zhang Z, Sherlock D, West R, West R (2003) Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity. Macromolecules 36:9176–9180CrossRefGoogle Scholar
  48. 48.
    Karatas Y, Kaskhedikar N, Burjanadze M, Wiemhöfer HD (2006) Synthesis of cross-linked comb polysiloxane for polymer electrolyte membranes. Macromol Chem Phys 207:419–425CrossRefGoogle Scholar
  49. 49.
    Kang J, Fang S (2002) Synthesis and ionic conductivity of comb-like polysiloxanes with pendant oligo(oxyethy1ene) side chains and quaternary ammoniurn groups. Polym Bull 49:127–134CrossRefGoogle Scholar
  50. 50.
    Mukbaniani O, Titvinidze G, Dundua A, Doroshenko M, Tatrishvili T (2008) Synthesis of polysiloxanes with pendant methoxy-substituted aromatic fragments. J Appl Polym Sci 107:2567–2571CrossRefGoogle Scholar
  51. 51.
    Chen G, Feng J, Qiu W, Zhao Y (2017) Eugenol-modified polysiloxanes as effective anticorrosion additives for epoxy resin coatings. RSC Adv 7:55967–55976CrossRefGoogle Scholar
  52. 52.
    Li X, Li Y, Ren L, Zhu K, Zhao Y, Yuan X (2017) Self-crosslinking coatings of fluorinated polysiloxanes with enhanced icephobicity. Thin Solid Films 639:113–122CrossRefGoogle Scholar
  53. 53.
    Indulekha K, Behera PK, Rajeev RS, Gouri C, Ninan KN (2017) Polyfluoroalkyl siloxanes with varying trifluoropropyl content: synthesis, characterization and solvent resistance studies. J Fluorine Chem 200:24–32CrossRefGoogle Scholar
  54. 54.
    Indulekha K, Mathew A, Rajeev RS, Ninan KN, Gouri C (2017) A facile route to fluoroalkylsiloxane polymers having resistance to corrosive acidic conditions: synthesis and characterization. Eur Polym J 97:94–103CrossRefGoogle Scholar
  55. 55.
    Zhan-Xiong L (2008) Preparation, characterization and antifoaming property of fluorosilicone oils with fluoroalkyloxypropyl group substitution. e-Polymers 003:1–12Google Scholar
  56. 56.
    Fukurawa Y, Kotera M (2002) Synthesis of fluorosilicone having highly fluorinated alkyl side chains based on the hydrosilylation of fluorinated olefins with polyhydromethylsiloxane. J Polym Sci Part A Polym Chem 40:3120–3128CrossRefGoogle Scholar
  57. 57.
    Boutevin B, Guida-Pietrasanta F, Ratsimihety A (2000) Synthesis of photocrosslinkable fluorinated polydimethylsiloxanes: direct introduction of acrylic pendant groups via hydrosilylation. J Polym Sci A 38:3722–3728CrossRefGoogle Scholar
  58. 58.
    Colomines G, Andre S, Andrieu X, Rousseau A, Boutevin B (2003) Synthesis and characterization of ultraviolet-curable fluorinated polydimethylsiloxanes as ultraviolet-transparent coatings for optical fiber gratings. J Appl Polym Sci 90:2021–2026CrossRefGoogle Scholar
  59. 59.
    Snyder JF, Hutchison JC, Ratner MA, Shriver DF (2003) Synthesis of comb polysiloxane polyelectrolytes containing oligoether and perfluoroether side chains. Chem Matter 15:4223–4230CrossRefGoogle Scholar
  60. 60.
    Liu H, Fu B, Li Y, Shang Q, Xiao G (2013) Antigraffiti polyurethane coating containing fluorocarbon side chains grafted polymethylsiloxane. J Coat Technol Res 10:361–369CrossRefGoogle Scholar
  61. 61.
    Wang Y, Du X, Li Y, Long Y, Qiu D, Tai H, Tang X, Jiang Y (2013) A simple route to functionalize siloxane polymers for DMMP sensing. J Appl Polym Sci 130:4516–4520Google Scholar
  62. 62.
    Huang J, Jiang Y, Du X, Bi J (2010) A new siloxane polymer for chemical vapor sensor. Sens Actuators B 146:388–394CrossRefGoogle Scholar
  63. 63.
    El-Ashgar NM, El-Nahhal IM, Chehimi MM, Babonneau F, Livage J (2010) Extraction of Co, Ni, Cu, Zn and Cd ions using 2-aminophenylaminopropylpolysiloxane. Environ Chem Lett 8:311–316CrossRefGoogle Scholar
  64. 64.
    Zawartka W, Pośpiech P, Cypryk M, Trzeciak AM (2015) Palladium supported on aminopropyl-functionalized polymethylsiloxane microspheres: simple and effective catalyst for the Suzuki-Miyaura C–C coupling. J Mol Catal A Chem 407:230–235CrossRefGoogle Scholar
  65. 65.
    Zawartka W, Pośpiech P, Cypryk M, Trzeciak AM (2016) Carbonylative Suzuki-Miyaura coupling catalyzed by palladium supported on aminopropyl polymethylsiloxane microspheres under atmospheric pressure of CO. J Mol Catal A Chem 417:76–80CrossRefGoogle Scholar
  66. 66.
    Wang Z, Beletskiy EV, Sungsik L, Hou X, Wu Y, Li T, Kung MC, Kung HH (2015) Amine-functionalized siloxane oligomer facilitated synthesis of subnanometer colloidal Au particles. J Mater Chem A 3:1743–1751CrossRefGoogle Scholar
  67. 67.
    Sauvet G, Fortuniak W, Kazmierski K, Chojnowski J (2003) Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci A 41:2939–2948CrossRefGoogle Scholar
  68. 68.
    Brook MA (2000) Silicon in organic, organometallic, and polymer chemistry. Wiley, pp 404–406Google Scholar
  69. 69.
    Binet C, Dumont M, Fitremann J, Gineste S, Laurent E, Marty JD, Mauzac M, Mingotaud AF, Moukarzel W, Palaprat G, Zadoina L (2008) Hydrosilylation of polymethylhydrogenosiloxanes in the presence of functional molecules such as amines, esters or alcohols. In: Ganachaud F, Boileau S, Boury B (eds) Silicon based polymers. Springer, Dordrecht, pp 135–150CrossRefGoogle Scholar
  70. 70.
    Kanjilal B, Noshadi I, McCutcheon JR, Asandei AD, Parnas RS (2015) Allylcyclohexylamine functionalized siloxane polymer and its phase separated blend as pervaporation membranes for 1,3-propanediol enrichment from binary aqueous mixtures. J Membr Sci 486:59–70CrossRefGoogle Scholar
  71. 71.
    Guerra-Contreras A, Villegas A, Ramirez-Oliva E, Cervantes J (2015) Characterization and study of properties in a polar solvent of a functionalized and quaternized poly(dimethylsiloxane-co-methyl-hydridosiloxane). Silicon 9:525–533CrossRefGoogle Scholar
  72. 72.
    Lei Y, Zhou S, Dong C, Zhang A, Lin Y (2018) PDMS tri-block copolymers bearing quaternary ammonium salts for epidermal antimicrobial agents: synthesis, surface adsorption and non-skin-penetration. React Funct Polym 124:20–28CrossRefGoogle Scholar
  73. 73.
    Zhao J, An QF, Li XQ, Huang LX, Xu X (2015) A comblike polysiloxane with pendant quaternary ammonium polyether groups: its synthesis, physical properties and antibacterial performance. J Polym Res 22:174CrossRefGoogle Scholar
  74. 74.
    Hou Z, Kan C (2015) Polysiloxanes with quaternary ammonium groups for SPPO aqueous emulsions. J Surfact Deterg 18:517–522CrossRefGoogle Scholar
  75. 75.
    Grazulevicius JV, Strohriegl P, Pielichowski J, Pielichowski K (2003) Carbazole-containing polymers: synthesis, properties and applications. Prog Polym Sci 28:1297–1353CrossRefGoogle Scholar
  76. 76.
    Claessens CG, Hahn U, Torres T (2008) Phthalocyanines: from outstanding electronic properties to emerging applications. Chem Rec 8:75–97PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Nordin NH, Othman N, Ahmad Z (2013) Synthesis and thermal stability of cross-linked carbazole-substituted poly(dimethylsiloxane) for LED encapsulation. Adv Mater Res 747:733–736CrossRefGoogle Scholar
  78. 78.
    Nordin NH, Ramli MR, Othman N, Ahmad Z (2015) Synthesis of carbazole-substituted poly(dimethylsiloxane) and its improved refractive index. J Appl Polym Sci 41654:1–9Google Scholar
  79. 79.
    Hua J, Li Z, Long K, Qin J, Li S, Ye C, Lu Z (2005) Synthesis and second order nonlinear optical properties of multifunctional polysiloxanes with sulfonyl based chromophores. J Polym Sci A 43:1317–1324CrossRefGoogle Scholar
  80. 80.
    Li Z, Li J, Qin J, Qin J, Ye C (2005) Synthesis and characterization of polysiloxanes containing carbazolyl and sulfonyl-indole based chromophore as side chains. Polymer 46:363–368CrossRefGoogle Scholar
  81. 81.
    Moon IK, Oh JW, Kim N (2008) Synthesis and optical properties of benzocarbazole-substituted polysiloxanes for polymeric photorefractive materials. J Photochem Photobiol A 194:351–355CrossRefGoogle Scholar
  82. 82.
    Ganicz T, Makowski T, Stanczyk WA, Tracz A (2012) Side chain polysiloxanes with phthalocyanine moieties. Express Polym Lett 6:373–382CrossRefGoogle Scholar
  83. 83.
    Mefteh WB, Touzi H, Chevalier Y, Ouada HB, Othmane A, Kalfat R, Jaffrezic-Renault N (2014) Comparison of polysiloxane films substituted by undecenyl-cyclam and by naphthyl-cyclam for the design of ISFET devices sensitive to Fe3+ ions. Sens Actuators B 204:723–733CrossRefGoogle Scholar
  84. 84.
    Manson BW, Morrison JJ, Coupar I, Jaffrès PA, Morris RE (2001) Synthesis of aldehyde functionalised polyhedral oligomeric silsesquioxane. J Chem Soc Dalton Trans: 1123–1127Google Scholar
  85. 85.
    Herrero M, Alonso B, Losada J, Garcıaě-Armada P, Casado CM (2012) Ferrocenyl dendrimers based on octasilsesquioxane cores. Organometallics 31:6344–6350CrossRefGoogle Scholar
  86. 86.
    Liu Y, Zheng S, Nie K (2005) Epoxy nanocomposites with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Polymer 46:12016–12025CrossRefGoogle Scholar
  87. 87.
    Zeng K, Liu Y, Zheng S (2008) Poly(ethylene imine) hybrids containing polyhedral oligomeric silsesquioxanes: Preparation, structure and properties. Eur Polym J 44:3946–3956CrossRefGoogle Scholar
  88. 88.
    Szubert K, Marciniec B, Dutkiewicz M, Potrzebowski MJ, Maciejewski H (2014) Functionalization of spherosilicates via hydrosilylation catalyzed by well-defined rhodium siloxide complexes immobilized on silica. J Mol Catal A: Chem 391:150–157CrossRefGoogle Scholar
  89. 89.
    Soh MS, Yap AUJ, Sellinger A (2007) Methacrylate and epoxy functionalized nanocomposites based on silsesquioxane cores for use in dental applications. Eur Polym J 43:315–327CrossRefGoogle Scholar
  90. 90.
    Kastner J, Lorret O, Rank A, Schwarzinger C, Dittert B, Mühlberger M (2015) Nanocontact printing stamp material via bi-functionalization of polyhedral oligomeric silsesquioxane. Eur Polym J 65:221–231CrossRefGoogle Scholar
  91. 91.
    Zhang C, Laine RM (2000) Hydrosilylation of Allyl Alcohol with [HSiMe2OSiO1.5]8: octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and its octamethacrylate derivative as potential precursors to hybrid nanocomposites. J Am Chem Soc 122:6979–6988CrossRefGoogle Scholar
  92. 92.
    Kim KM, Inakura T, Chujo Y (2001) Organic-inorganic polymer hybrids using octasilsesquioxanes with hydroxyl groups. Polym Bull 46:351–356CrossRefGoogle Scholar
  93. 93.
    Kuo SW, Lin HC, Huang WJ, Huang CF, Chang FC (2006) Hydrogen bonding interactions and miscibility between phenolic resin and octa(acetoxystyryl) polyhedral oligomeric silsesquioxane (AS-POSS) nanocomposites. J Pol Sci Pol Phys 44:673–686CrossRefGoogle Scholar
  94. 94.
    Lin HC, Kuo SW, Huang CF, Chang FC (2006) Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane. Macromol Rapid Commun 27:537–541CrossRefGoogle Scholar
  95. 95.
    Huang KW, Tsai LW, Kuo SW (2009) Influence of octakis-functionalized polyhedral oligomeric silsesquioxanes on the physical properties of their polymer nanocomposites. Polymer 50:4876–4887CrossRefGoogle Scholar
  96. 96.
    Lu YS, Kuo SW (2014) Functional groups on POSS nanoparticles influence the self-assembled structures of diblock copolymer composites. RSC Adv 4:34849–34859CrossRefGoogle Scholar
  97. 97.
    Lu YS, Yu CY, Ln YC, Kuo SW (2016) Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles. Soft Matter 12:2288–2300PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Yu CY, Kuo SW (2018) Phenolic functionality of polyhedral oligomeric silsesquioxane nanoparticles affects self-assembly supramolecular structures of block copolymer hybrid complexes. Ind Eng Chem Res 57:2546–2559CrossRefGoogle Scholar
  99. 99.
    Sheen YC, Lu CH, Huang CF, Kuo SW, Chang FC (2008) Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites. Polymer 49:4017–4024CrossRefGoogle Scholar
  100. 100.
    Igarashi M, Kobayashi T, Sato K, Ando W, Matsumoto T, Shimada S, Hara M, Uchida H (2013) Selective hydrosilylation of allyl esters with octahydridosilsesquioxane. J Organomet Chem 725:54–59CrossRefGoogle Scholar
  101. 101.
    Kim Y, Roh J, Kim JH, Kang CM, In-NK Jun B, Lee C, Hwang DH (2013) Photocurable propyl-cinnamate-functionalized polyhedral oligomeric silsesquioxane as a gate dielectric for organic thin film transistors. Org Electron 14:2315–2323CrossRefGoogle Scholar
  102. 102.
    Zhang X, Wang C, Fang S, Sun J, Li C, Hu Y (2013) Synthesis and characterization of well-defined star PLLA with a POSS core and their microspheres for controlled release. Colloid Polym Sci 291:789–803CrossRefGoogle Scholar
  103. 103.
    Mya KY, Li X, Chen L, Ni X, Li J, He C (2005) Core-corona structure of cubic silsesquioxane-poly(ethylene oxide) in aqueous solution: fluorescence, light scattering, and TEM studies. J Phys Chem B 109:9455–9462PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Markovic E, Ginic-Markovic M, Clarke S, Matisons J, Hussain M, Simon GP (2007) Poly(ethylene glycol)-octafunctionalized polyhedral oligomeric silsesquioxane: synthesis and thermal analysis. Macromolecules 40:2694–2701CrossRefGoogle Scholar
  105. 105.
    Pozza GME, Crotty S, Rawiso M, Schubert US, Lutz PJ (2015) Molecular and structural characterization of hybrid poly(ethylene oxide)—polyhedral oligomeric silesquioxanes star-shaped macromolecules. J Phys Chem B 119:1669–1680PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Dutkiewicz M, Maciejewski H, Marciniec B, Karasiewicz J (2011) New fluorocarbofunctional spherosilicates: synthesis and characterization. Organometallics 30:2149–2153CrossRefGoogle Scholar
  107. 107.
    Wang X, Ye Q, Song J, Cho CM, Heab C, Xu J (2015) Fluorinated polyhedral oligomeric silsesquioxanes. RSC Adv 5:4547–4553CrossRefGoogle Scholar
  108. 108.
    Majumdar P, Lee E, Gubbins N, Stafslien SJ, Daniels J, Thorson CJ, Chisholm BJ (2009) Synthesis and antimicrobial activity of quaternary ammonium functionalized POSS (Q-POSS) and polysiloxane coating containing Q-POSS. Polymer 50:1124–1133CrossRefGoogle Scholar
  109. 109.
    Majumdar P, He J, Lee E, Kallam A, Gubbins N, Stafslien SJ, Daniels J, Chisholm BJ (2010) Antimicrobial activity of polysiloxane coatings containing quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane. J Coat Technol Res 7(4):455–467CrossRefGoogle Scholar
  110. 110.
    Su X, Guang S, Xu H, Liu X, Wang X, Deng Y, Wang P (2009) Controllable preparation and optical limiting properties of POSS-based functional hybrid composites with different molecular architectures. Macromolecules 42:899–8976CrossRefGoogle Scholar
  111. 111.
    Białecka-Florjańczyk E, Sołtysiak JT (2011) Synthesis and characterization of liquid crystalline silsesquioxanes containing azobenzene groups. Mol Cryst Liq Cryst Sci Technol 548:28–36CrossRefGoogle Scholar
  112. 112.
    Ledin PA, Tkachenko I, Xu W, Choi I, Shevchenko VV, Tsukruk VV (2014) Star-shaped molecules with polyhedral oligomeric silsesquioxane core and azobenzene dye arms. Langmuir 30:8856–8865PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Miniewicz A, Girones J, Karpinski P, Mossety-Leszczak B, Galina H, Dutkiewicz M (2014) Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J Mater Chem C 2:432–440CrossRefGoogle Scholar
  114. 114.
    Imae I, Kawakami Y (2005) Development of a novel POSS-based material having carbazole moiety. In: Proceedings of SPIE, vol 5937Google Scholar
  115. 115.
    Markovic E, Nguyen K, Clarke S, Constantopoulos K, Matisons J, Simon GP (2013) Synthesis of POSS-polyurethane hybrids using octakis(m-isoprenyl-α,α′-dimethylbenzylisocyanato dimethylsiloxy) octasilsesquioxane (Q8M8 TMI) as a crosslinking agent. J Polym Sci A 51:5038–5045CrossRefGoogle Scholar
  116. 116.
    Schäfer S, Kickelbick G (2017) Simple and high yield access to octafunctional azido, amine and urea group bearing cubic spherosilicates. Dalton Trans 46:221–226CrossRefGoogle Scholar
  117. 117.
    Hu WH, Huang KW, Chiou C, Kuo SW (2012) Complementary multiple hydrogen bonding interactions induce the self-assembly of supramolecular structures from heteronucleobase-functionalized benzoxazine and polyhedral oligomeric silsesquioxane nanoparticles. Macromolecules 45:9020–9028CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aleksandra Chechelska-Noworyta
    • 1
  • Jan Mrówka
    • 1
  • Maria Owińska
    • 1
  • Magdalena Hasik
    • 1
  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations