Skip to main content

In Situ and Operando Techniques in Catalyst Characterisation and Design

  • Chapter
  • First Online:
Molecular Spectroscopy—Experiment and Theory

Abstract

This chapter intends to present the classical and modern techniques that are used for in situ characterisation of catalytic materials. Determination of the structure of the catalyst presents three main problems: (1) heterogeneous catalysis phenomena are limited to the outer surface of the material where the molecules adsorb and react, and for this reason, there are only a few methods able to assess catalyst surface structure and composition; (2) the catalyst surface under reaction conditions and upon the influence of the reacting agents is different from that occurring under ambient conditions, which limits the application of the analytical methods to those which operate at normal or elevated pressures and high temperatures, (3) catalytic materials are complex and heterogeneous, so many analytical methods, including surface imaging, should be employed in order to understand the structure–activity relationships. The remedy for the problems is the application of in situ analyses that rely on several complementary spectroscopic methods and utilise surface sensitive probe molecules . Different kinds of probe molecules are described: from universal probes to specific ones that enable the determination of acidic and basic activity. The IR, Raman and UV-Vis methods are presented here and described using examples from the literature. New trends in in situ experimentation involve time-resolved techniques for studying fast reactions, fluorescence methods and coupled techniques for surface in situ imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley

    Google Scholar 

  2. Haw JF (2002) In-situ spectroscopy in heterogeneous catalysis. Wiley-VCH

    Google Scholar 

  3. Daydov A (2003) Molecular spectroscopy of oxide catalyst surfaces. Wiley

    Google Scholar 

  4. Weckhuysen BM (2002) Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem Commun 2:97–110

    Article  Google Scholar 

  5. Banares MA (2005) Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal Today 100:71–77

    Article  CAS  Google Scholar 

  6. Weckhuysen BM (2004) In-situ spectroscopy of catalysts. In: Weckhuysen BM (ed) In-situ spectroscopy of catalysts. American Scientific Publishers, Stevenson Ranch, CA, pp 1–12

    Google Scholar 

  7. Ryczkowski J (2001) IR spectroscopy in catalysis. Catal Today 68:263–381

    Article  CAS  Google Scholar 

  8. Niemantsverdriet JW (2007) Spectroscopy in catalysis. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  9. Frenken J, Groot I (eds) (2017) Operando research in heterogeneous catalysis. Springer Nature, Cham, Switzerland

    Google Scholar 

  10. Tarach K, Góra-Marek K, Tekla J, Brylewska K, Datka J, Mlekodaj K, Makowski W, Igualada López MC, Martínez Triguero J, Rey F (2014) Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. J Catal 312:46–57

    Article  CAS  Google Scholar 

  11. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614

    Article  CAS  Google Scholar 

  12. Lee AF, Wilson K (2015) Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catal Today 242:3–18

    Article  CAS  Google Scholar 

  13. Knozinger H (1993) Infrared spectroscopy as a probe of surface acidity. In: Joyner RW, van Santen RA (eds) Elementary reaction steps in heterogeneous catalysis. Springer Science + Business Media B.V., pp 267–285

    Google Scholar 

  14. Hadjiivanov KI, Vayssilov GN (2002) Characterisation of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv Catal 47:307–511

    CAS  Google Scholar 

  15. Taylor HS (1925) A theory of the catalytic surface. Proc R Soc A 108:105–111

    Article  CAS  Google Scholar 

  16. Barzetti T, Selli E, Moscotti D, Forni L (1996) Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. J Chem Soc, Faraday Trans 92:1401–1407

    Article  CAS  Google Scholar 

  17. Lercher JA, Gründling C, Eder-Mirth G (1996) Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal Today 27:353–376

    Article  CAS  Google Scholar 

  18. Halasz I (2010) Silica and silicates in modern catalysis. Transworld Research Network

    Google Scholar 

  19. Boroń P, Chmielarz L, Gil B, Marszałek B, Dzwigaj S (2016) Experimental evidence of NO SCR mechanism in the presence of the BEA zeolite with framework and extra-framework cobalt species. Appl Catal B Environ 198:457–470

    Article  Google Scholar 

  20. Barthomeuf D (1996) Basic zeolites: characterization and uses in adsorption and catalysis. Catal Rev Sci Eng 38:521–612

    Article  Google Scholar 

  21. Chlebda D, Stachurska P, Jędrzejczyk R, Kuterasiński Ł, Dziedzicka A, Górecka S, Chmielarz L, Łojewska J, Sitarz M, Jodłowski PJ (2018) DeNOx abatement over sonically prepared iron-substituted Y, USY and MFI zeolite catalysts in lean exhaust gas conditions. Nanomaterials 8:21

    Article  Google Scholar 

  22. Ochońska J, McClymont D, Jodłowski PJ, Knapik A, Gil B, Makowsk A, Łasocha W, Kołodziej A, Kolaczkowski ST, Łojewska J (2012) Copper exchanged ultrastable zeolite Y—a catalyst for NH3-SCR of NOx from stationary biogas engines. Catal Today 191:6–11

    Article  Google Scholar 

  23. Lavalley JC (1996) Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal Today 27:377–401

    Article  CAS  Google Scholar 

  24. Kryca J, Jodłowski PJ, Iwaniszyn M, Gil B, Sitarz M, Kolodziej A, Lojewska T, Lojewska J (2016) Cu SSZ-13 zeolite catalyst on metallic foam support for SCR of NOx with ammonia: catalyst layering and characterisation of active sites. Catal Today 268:142–149

    Article  CAS  Google Scholar 

  25. Góra-Marek K, Gil B, Datka J (2009) Quantitative IR studies of the concentration of Co2 + and Co3+ sites in zeolites CoZSM-5 and CoFER. Appl Catal A Gen 353:117–122

    Article  Google Scholar 

  26. Góra-Marek K, Gil B, Śliwa M, Datka J (2007) An IR spectroscopy study of Co sites in zeolites CoZSM-5. Appl Catal A Gen 330:33–42

    Article  Google Scholar 

  27. Ciuparu D, Bensalem A, Pfefferle L (2000) Pd–Ce interactions and adsorption properties of palladium: CO and NO TPD studies over Pd–Ce/Al2O3 catalysts. Appl Catal B Environ 26:241–255

    Article  CAS  Google Scholar 

  28. Chin SY, Williams CT, Amiridis MD (2006) In situ FT-IR studies of CO adsorption on fresh Mo2C/Al2O3 catalyst. J Phys Chem B 82:871–882

    Article  Google Scholar 

  29. Feio LSF, Hori CE, Damyanova S, Noronha FB, Cassinelli WH, Marques CMP, Bueno JMC (2007) The effect of ceria content on the properties of Pd/CeO2/Al2O3 catalysts for steam reforming of methane. Appl Catal A Gen 316:107–116

    Article  CAS  Google Scholar 

  30. Hadjiivanov K, Knözinger H (2000) FTIR study of low-temperature CO adsorption on Cu-ZSM-5: Evidence of the formation of Cu2+(CO)2 species. J Catal 191:480–485

    Article  CAS  Google Scholar 

  31. Datka J, Kozyra P (2005) TPD–IR studies of CO desorption from zeolites CuY and CuX. J Mol Struct 744–747:991–996

    Article  Google Scholar 

  32. Rejmak P, Broclawik E (2008) Nitrogen monoxide interaction with Cu (I)sites in zeolites X and Y: quantum chemical calculations and IR studies. J Phys Chem C 112:17998–18010

    Article  CAS  Google Scholar 

  33. Farneth WE, Staley RH, Sleight AW (1986) Stoichiometry and structural effects in alcohol chemisorption/temperature-programmed desorption on MoO3. J Am Chem Soc 108:2327–2332

    Article  CAS  PubMed Central  Google Scholar 

  34. Benaissa M, Travert J, Lavalley J (1985) Microcalorimetric and Fourier Transform infrared spectroscopic studies of methanol adsorption on Al2O3. J Phys Chem 89:5433–5439

    Article  Google Scholar 

  35. Busca G, Forzatti P, Lavalley JC, Tronconi E (1985) A TPD, FT-IR and catalytic study of the interaction of methanol with pure and KOH doped TiO2 anatase. Stud Surf Sci Catal 20:15–24

    Article  CAS  Google Scholar 

  36. Rossi PF, Busca G, Lorenzelli V, Saur O, Lavalley JC (1987) Microcalorimetric and FT-IR spectroscopic study of the adsorption of isopropyl alcohol and hexafluoroisopropyl alcohol on titanium dioxide. Langmuir 3:52–58

    Article  CAS  Google Scholar 

  37. Badlani M, Wachs IE (2001) Methanol: a “smart” chemical probe molecule. Catal Lett 75:137–149

    Article  CAS  Google Scholar 

  38. Mao C-F, Vannice MA (1995) Formaldehyde oxidation over Ag catalysts. J Catal 154:230–244

    Article  CAS  Google Scholar 

  39. Busca G (1999) The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys Chem Chem Phys 1:723–736

    Article  CAS  Google Scholar 

  40. Vorob’eva MP, Greish AA, Ivanov AV, Kustov LM (2000) Preparation of catalyst carriers on the basis of alumina supported on metallic gauzes. Appl Catal A Gen 199:257–261

    Article  Google Scholar 

  41. Jacobs G, Williams L, Graham U, Thomas GA, Sparks DE, Davis B (2003) Low temperature water-gas shift: in situ DRIFTS-reaction study of ceria surface area on the evolution of formates on Pt/CeO2 fuel processing catalysts for fuel cell applications. Appl Catal A Gen 252:107–118

    Article  CAS  Google Scholar 

  42. Armaroli T, Minoux D, Gautier Euzen P (2003) A DRIFTS study of Mo/alumina interaction: from Mo/boehmite solution to Mo/γAl2O3 support. Appl Catal A Gen 251:241–253

    Article  CAS  Google Scholar 

  43. Liu X (2008) DRIFTS study of surface of γ -alumina and Its dehydroxylation. J Phys Chem C 112:5066–5073

    Article  CAS  Google Scholar 

  44. Kung MC, Lin SSY, Kung HH (2012) In situ infrared spectroscopic study of CH4 oxidation over Co-ZSM-5. Top Catal 55:108–115

    Article  CAS  Google Scholar 

  45. Ferri D, Bürgi T, Baiker A (2001) Pt and Pt/Al2O3 thin films for investigation of catalytic solid-liquid interfaces by ATR-IR spectroscopy: CO adsorption, H2-induced reconstruction and surface-enhanced absorption. J Phys Chem B 105:3187–3195

    Article  CAS  Google Scholar 

  46. Ferri D, Bürgi T, Baiker A (2002) Probing boundary sites on a Pt/Al2O3 model catalyst by CO2 hydrogenation and in situ ATR-IR spectroscopy of catalytic solid–liquid interfaces. Phys Chem Chem Phys 4:2667–2672

    Article  CAS  Google Scholar 

  47. Burgener M, Wirz R, Mallat T, Baiker A (2004) Nature of catalyst deactivation during citral hydrogenation: a catalytic and ATR-IR study. J Catal 228:152–161

    Article  CAS  Google Scholar 

  48. Grabow K, Bentrup U (2014) Homogeneous catalytic processes monitored by combined in situ. ACS Catal 4:2153–2164

    Article  CAS  Google Scholar 

  49. Rabeah J, Bentrup U, StoBer R, Bruckner A (2015) Selective alcohol oxidation by a copper TEMPO catalyst: mechanistic insights by simultaneously coupled operando EPR/UV-Vis/ATR-IR spectroscopy. Angew Chemie Int Ed 54:11791–11794

    Article  CAS  Google Scholar 

  50. Ohlin L, Bazin P, Thibault-Starzyk F, Hedlund J, Mattias Grahn M (2013) Adsorption of CO2, CH4, and H2O in zeolite ZSM-5 studied using in situ ATR-FTIR spectroscopy. J Phys Chem C 117:16972–16982

    Article  CAS  Google Scholar 

  51. Savara A, Weitz E (2014) Elucidation of intermediates and mechanisms in heterogeneous catalysis using infrared spectroscopy. Annu Rev Phys Chem 65:249–273

    Article  CAS  PubMed Central  Google Scholar 

  52. Xu Z, Yu J, Jaroniec M (2015) Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Appl Catal B Environ 163:306–312

    Article  CAS  Google Scholar 

  53. Macina D, Piwowarska Z, Góra-Marek K, Tarach K, Rutkowska M, Girman V, Blachowski A, Chmielarz L (2016) SBA-15 loaded with iron by various methods as catalyst for DeNOx process. Mater Res Bull 78:72–82

    Article  CAS  Google Scholar 

  54. Murakami N, Koga N (2016) In situ photoacoustic FTIR studies on photocatalytic oxidation of 2-propanol over titanium(IV) oxide. Catal Commun 83:1–4

    Article  CAS  Google Scholar 

  55. Qi L, Cheng B, Yu J, Ho W (2016) High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature. Elsevier BV

    Google Scholar 

  56. Haw JF (2002) In-situ spectroscopy in heterogeneous catalysis. Wiley-VCH

    Google Scholar 

  57. Rasmussen SB, Portela R, Bazin P, Ávila P, Banares MA, Daturi M (2018) Transient operando study on the NH3/NH4+ interplay in V-SCR monolithic catalysts. Appl Catal B Environ 224:109–115

    Article  CAS  Google Scholar 

  58. Thibault-Starzyk F, Mauge F (2012) Infrared Spectroscopy. In: Che M, Védrine J (eds) Characterization of solid materials and heterogeneous catalysts. From structure to surface reactivity. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 3–48

    Google Scholar 

  59. Benaliouche F, Boucheffa Y, Thibault-Starzyk F (2012) In situ FTIR studies of propene adsorption over Ag- and Cu-exchanged Y zeolites. Microporous Mesoporous Mater 147:10–16

    Article  Google Scholar 

  60. El-Roz M, Bazin P, Daturi M, Thibault-Starzyk F (2013) Operando IR coupled to SSITKA for photocatalysis: reactivity and mechanistic studies. ACS Catal 3:2790–2798

    Article  CAS  Google Scholar 

  61. El-Roz M, Kus M, Cool P, Thibault-Starzyk F (2012) New operando IR technique to study the photocatalytic activity and selectivity of TiO2 nanotubes in air purification: Influence of temperature, UV intensity, and VOC concentration. J Phys Chem C 116:13252–13263

    Article  CAS  Google Scholar 

  62. Keturakis CJ, Zhu M, Gibson EK, Daturi M, Tao F, Frenkel AI, Wachs IE (2016) Dynamics of CrO3–Fe2O3 catalysts during the high-temperature water-gas shift reaction: molecular structures and reactivity. ACS Catal 6:4786–4798

    Article  CAS  Google Scholar 

  63. Mitchell MB (1993) Fundamentals and applications of diffuse reflectance infrared fourier transform (DRIFT) spectroscopy. In: Urban MW, Craver CD (eds) Structure-property relations in polymers, spectroscopy and performance. American Chemical Society, Washington, DC, pp 351–375

    Chapter  Google Scholar 

  64. Hamadeh IM, King D, Griffiths PR (1984) Heatable-evacuable cell and optical system for diffuse reflectance FT-IR spectrometry of adsorbed species. J Catal 88:264–272

    Article  CAS  Google Scholar 

  65. Weckhuysen BM (2009) Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chemie Int Ed 48:4910–4943

    Article  CAS  Google Scholar 

  66. Jodłowski PJ, Jędrzejczyk RJ, Chlebda D, Gierda M, Łojewska J (2017) In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface. J Catal 350:1–12

    Article  Google Scholar 

  67. Becker E, Carlsson P, Kylhammar L, Newton MA, Skoglundh M (2011) In situ spectroscopic investigation of low-temperature oxidation of methane over alumina-supported platinum during periodic operation. J Phys Chem C 115:944–951

    Article  CAS  Google Scholar 

  68. Rutkowska M, Díaz U, Palomares AE, Chmielarz L (2015) Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNOx process. Appl Catal B Environ 168–169:531–539

    Article  CAS  Google Scholar 

  69. Chlebda DK, Jodłowski PJ, Jędrzejczyk RJ, Łojewska J (2018) Generalised two-dimensional correlation analysis of the Co, Ce, and Pd mixed oxide catalytic systems for methane combustion using in situ infrared spectroscopy. Spectrochim Acta, Part A 192:202–210

    Article  CAS  Google Scholar 

  70. Chlebda DK, Jodłowski PJ, Jędrzejczyk RJ, Łojewska J (2017) 2D-COS of in situ μ-Raman and in situ IR spectra for structure evolution characterisation of NEP-deposited cobalt oxide catalyst during n-nonane combustion. Spectrochim Acta, Part A 186:44–51

    Article  CAS  Google Scholar 

  71. Marinkovic NS, Wang Q, Barrio L, Ehrlich SN, Khalid S, Cooper C, Frenkel AI (2011) Combined in situ X-ray absorption and diffuse reflectance infrared spectroscopy: An attractive tool for catalytic investigations. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 649:204–206

    Article  CAS  Google Scholar 

  72. Brieger C, Melke J, Van der Bosch N, Reinholz U, Riesemeier H, Guilherme Buzanich A, Kayarkatte MK, Derr I, Schökel A, Roth C (2016) A combined in-situ XAS-DRIFTS study unraveling adsorbate induced changes on the Pt nanoparticle structure. J Catal 339:57–67

    Article  CAS  Google Scholar 

  73. Parlett CMA, Gaskell CV, Naughton JN, Newton MA, Wilson K, Lee AF (2013) Operando synchronous DRIFTS/MS/XAS as a powerful tool for guiding the design of Pd catalysts for the selective oxidation of alcohols. Catal Today 205:76–85

    Article  CAS  Google Scholar 

  74. Jodłowski PJ, Chlebda D, Piwowarczyk E, Chrzan M, Jędrzejczyk RJ, Sitarz M, Węgrzynowicz A, Kołodziej A, Łojewska J (2016) In situ and operando spectroscopic studies of sonically aided catalysts for biogas exhaust abatement. J Mol Struct 1126:132–140

    Article  Google Scholar 

  75. Zaera F (2014) New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem Soc Rev 43:7624–7663

    Article  CAS  Google Scholar 

  76. Iwamoto M, Hoshino Y (1995) Time-resolved FT-IR study on isotopic exchange of ditrosyl species strongly adsorbed on Co-MFI zeolite. Chem Lett 24:729–730

    Article  Google Scholar 

  77. Yeom YH, Frei H (2003) Step-scan FT-IR monitoring of transient HCO radicals in a room temperature zeolite. J Phys Chem B 107:6286–6291

    Article  CAS  Google Scholar 

  78. Zhang M, De Respinis M, Frei H (2014) Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem 6:362–367

    Article  CAS  PubMed Central  Google Scholar 

  79. Chang BK, Jang BW, Dai S, Overbury SH (2005) Transient studies of the mechanisms of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis. J Catal 236:392–400

    Article  CAS  Google Scholar 

  80. Chen T, Feng Z, Wu G, Shi J, Ma G, Ying P, Li C (2007) Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ fourier transform IR and time-resolved IR spectroscopy. J Phys Chem C 111:8005–8014

    Article  CAS  Google Scholar 

  81. Yao S, Mudiyanselage K, Xu W, Johnston-Peck AC, Hanson JC, Wu T, Stacchiola D, Rodriguez JA, Zhao H, Beyer KA, Chapman KW, Chupas PJ, Martínez-Arias A, Si R, Bolin TB, Liu W, Senanayake SD (2014) Unraveling the dynamic nature of a CuO/CeO2 catalyst for CO oxidation in Operando: a combined study of XANES (fluorescence) and drifts. ACS Catal 4:1650–1661

    Article  CAS  Google Scholar 

  82. Kang M, Perry D, Kim YR, Colburn AW, Lazenby RA, Unwin PR (2015) Time-resolved detection and analysis of single nanoparticle electrocatalytic impacts. J Am Chem Soc 137:10902–10905

    Article  CAS  PubMed Central  Google Scholar 

  83. Thibault-Starzyk AF, Seguin E, Thomas S, Daturi M, Arnolds H, King DA (2016) Real-time of cyanide infrared detection flip on silver-alumina catalyst NOx removal. Science 324:1048–1051

    Article  Google Scholar 

  84. Johnson TJ, Simon A, Weil JM, Harris GW (1993) Applications of time-resolved step-scan and rapid-scan FT-IR spectroscopy: dynamics from ten seconds to ten nanoseconds. Appl Spectrosc 47:1376–1381

    Article  CAS  Google Scholar 

  85. Wille A, Fridell E (2007) Millisecond step-scan FT-IR transmission spectroscopy under transient reaction conditions: CO oxidation over Pt/Al2O3. Appl Catal B Environ 70:294–304

    Article  CAS  Google Scholar 

  86. Noda I, Ozaki Y (2004) Two-dimensional correlation spectroscopy—applications in vibrational and optical spectroscopy. Wiley, Chichester, UK

    Book  Google Scholar 

  87. Noda I, Dowrey AE, Marcott C (1988) 2D IR spectroscopy a new tool for interpreting infrared spectra. Mikrochim Acta 94:101–103

    Article  Google Scholar 

  88. Gołąbek K, Tarach KA, Góra-Marek K (2017) Standard and rapid scan infrared spectroscopic studies of o-xylene transformations in terms of pore arrangement of 10-ring zeolites—2D COS analysis. Dalt Trans 46:9934–9950

    Article  Google Scholar 

  89. Gołąbek K, Tarach KA, Góra-Marek K (2018) 2D COS analysis of m-xylene transformation over medium-pore zeolites. Microporous Mesoporous Mater 266:90–101

    Article  Google Scholar 

  90. Tarach KA, Gołąbek K, Choi M, Góra-Marek K (2017) Quantitative infrared spectroscopic studies and 2D COS analysis of xylenes isomerization over hierarchical zeolites. Catal Today 283:158–171

    Article  CAS  Google Scholar 

  91. Thibault-Starzyk F, Vimont A, Gilson J-P (2001) 2D-COS IR study of coking in xylene isomerisation on H-MFI zeolite. Catal Today 70:227–241

    Article  CAS  Google Scholar 

  92. Fernandez C, Stan I, Gilson JP, Thomas K, Vicente A, Bonilla A, Pérez-Ramírez J (2010) Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: role of mesoporosity and acid site speciation. Chem A Eur J 16:6224–6233

    Article  CAS  Google Scholar 

  93. Lewis IR, Edwards HGM, Dekker M (eds) (2001) Handbook of Raman spectroscopy. From the research laboratory to the process line. Taylor & Francis Group, LLC, New York and Basel

    Google Scholar 

  94. Bañares MA, Wachs IE (2010) Raman spectroscopy of catalysts. In: Encyclopedia of analytical chemistry. American Cancer Society

    Google Scholar 

  95. Horsley JA, Wachs IE, Brown JM, Via GH, Hardcastle FD (1987) Structure of surface tungsten oxide species in the tungsten trioxide/alumina supported oxide system from X-ray absorption near-edge spectroscopy and Raman spectroscopy. J Phys Chem 91:4014–4020

    Article  CAS  Google Scholar 

  96. Kim H, Kosuda KM, Van Duyne RP, Stair PC (2010) Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev 39:4820–4844

    Article  CAS  PubMed Central  Google Scholar 

  97. Bañares MA, Martinez-Huerta MV, Gao X, Fierro JLG, Wachs IE (2000) Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane. In situ Raman. UV-Vis and reactivity studies. Catal Today 61:295–301

    Google Scholar 

  98. Delgass WN (1979) Spectroscopy in heterogeneous catalysis. Academic Press

    Google Scholar 

  99. Lee EL, Wachs IE (2007) In situ spectroscopic investigation of the molecular and electronic structures of SiO2 supported surface metal oxides. J Phys Chem C 111:14410–14425

    Article  CAS  Google Scholar 

  100. Łojewska J, Knapik Kołodziej, Jodłowski P (2013) Far field combined AFM and micro-Raman imaging for characterisation of surface of structured catalysts: example of Pd doped CoOx catalysts on precalcined kanthal steel. Top Catal 56:1088–1095

    Article  Google Scholar 

  101. Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G (2007) Direct monitoring of plasmon resonances in a tip-surface gap of varying width. Phys Rev B Condens Matter Mater Phys 76:1–4

    Article  Google Scholar 

  102. Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930

    Article  CAS  PubMed Central  Google Scholar 

  103. Yeo BS, Stadler J, Schmid T, Zenobi R (2009) Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett 472:1–13

    Article  CAS  Google Scholar 

  104. Chan KLA, Kazarian SG (2011) Tip-enhanced Raman mapping with top-illumination AFM. Nanotechnology 22:175701

    Article  PubMed Central  Google Scholar 

  105. Diskus M, Nilsen O, Fjellvåg H (2012) Combination of characterization techniques for atomic layer deposition MoO3 coatings: From the amorphous to the orthorhombic α-MoO3 crystalline phase. J Vac Sci Technol A Vacuum, Surf Film 30:01A107

    Article  Google Scholar 

  106. van Schrojenstein Lantman EM, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM (2012) Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat Nanotechnol 7:583–586

    Article  Google Scholar 

  107. Berweger S, Raschke MB (2010) Signal limitations in tip-enhanced Raman scattering: The challenge to become a routine analytical technique. Anal Bioanal Chem 396:115–123

    Article  CAS  PubMed Central  Google Scholar 

  108. Novotny L, Stranick SJ (2006) Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem 57:303–331

    Article  CAS  PubMed Central  Google Scholar 

  109. Łojewska J, Knapik A, Jodłowski P, Łojewski T, Kołodziej A (2013) Topography and morphology of multicomponent catalytic materials based on Co, Ce and Pd oxides deposited on metallic structured carriers studied by AFM/Raman interlaced microscopes. Catal Today 216:11–17

    Article  Google Scholar 

  110. Harvey CE, van Schrojenstein Lantman EM, Mank AJG, Weckhuysen BM (2012) An integrated AFM-Raman instrument for studying heterogeneous catalytic systems: a first showcase. Chem Commun 48:1742–1744

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Centre for Research and Development decision No. LIDER/204/L-6/14/NCBR/2015 and by the National Science Foundation project 2013/09/B/ST8/00171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Jodłowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jodłowski, P., Łojewska, J. (2019). In Situ and Operando Techniques in Catalyst Characterisation and Design. In: Koleżyński, A., Król, M. (eds) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-01355-4_11

Download citation

Publish with us

Policies and ethics