Advertisement

CMIA for Biomedical and Low-Voltage Low-Power Applications

  • Leila Safari
  • Giuseppe Ferri
  • Shahram Minaei
  • Vincenzo Stornelli
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In this chapter, current-mode instrumentation amplifiers (CMIA) suitable for biomedical and low-voltage low-power applications are reviewed. The design requirements and the techniques used to meet them are discussed. One of the major problems of biomedical interfaces is the necessity to attach at least three electrodes to patient body which causes discomfort and increases the power consumption. The CCII-based bootstrapping technique used to design a two-electrode low-voltage low-power interface circuit is discussed. Due to the advances in CMOS technology and the reduced supply voltages, similar to conventional 3 Op-Amp based IAs, the voltage input-voltage output CMIAs also require high common-mode input and output ranges. Different low-voltage methods used to improve common-mode input and output ranges are also discussed.

References

  1. 1.
    Das D. M., Ananthapadmanabhan J., Baghini M. S., Sharma D. K. (2014) Design considerations for high-CMRR low-power current mode instrumentation amplifier for biomedical data acquisition systems. IEEE International Conference on Electronics, Circuits and Systems (ICECS).Google Scholar
  2. 2.
    Jakobson C., Bloom I., Nemirovsky Y. (1998) 1/f noise in CMOS transistors for analog applications from subthreshold to saturation. Solid-State Electronics, 42(10):1807–1817.CrossRefGoogle Scholar
  3. 3.
    Ferri G., Stornelli V., Di Simone A. (2011) A CCII-based high impedance input stage for biomedical applications. Journal of Circuits, Systems, and Computers, 20(8):1441–1447.CrossRefGoogle Scholar
  4. 4.
    Stornelli V., Ferri G. (2014) A single current conveyor-based low voltage low power bootstrap circuit for electroCardioGraphy and electroEncephaloGraphy acquisition systems. Analog Integrated Circuits and Signal Processing, 79(1):171–175.CrossRefGoogle Scholar
  5. 5.
    Ferri G., Stornelli V., Fragnoli M. (2006) An integrated improved CCII topology for resistive sensor application. Analog Integrated Circuits and Signal Processing Journal, 48(3):247–250.CrossRefGoogle Scholar
  6. 6.
    Kalogiros S., Noulis T. (2016) Noise analysis and optimization of CMOS CCII+ based ECG Systems. International Conference on Telecommunications and Signal Processing (TSP), Vienna.Google Scholar
  7. 7.
    Wu H., Xu Y. P. (2005) A low-voltage low-noise CMOS instrumentation amplifier for portable medical monitoring systems. International IEEE-NEWCAS Conference.Google Scholar
  8. 8.
    Stornelli V., Ferri G., Pantoli L., Barile G., Pennisi S. (2018) A rail-to-rail constant-gm CCII for instrumentation amplifier applications. AEU - International Journal of Electronics and Communications, 91:103–109.CrossRefGoogle Scholar
  9. 9.
    Wilson B. (1989) Universal conveyor instrumentation amplifier. Electronics Letters, 25(7):470–471.CrossRefGoogle Scholar
  10. 10.
    Vieira F. C., Prior C. A., Rodrigues C. R., Perin L., Martins J. B. (2008) Current mode instrumentation amplifier with rail-to-rail input. Analog Integrated Circuits and Signal Processing, 57: 29–37.CrossRefGoogle Scholar
  11. 11.
    Prior C. A., Vieira F. C. B., Rodrigues C. R. (2006) Instrumentation amplifier using robust rail-to-rail operational amplifiers with gm control. IEEE International Midwest Symposium on Circuits and Systems, 2006.Google Scholar
  12. 12.
    Cini U., Toker A. (2017) DVCC based very low-offset current-mode instrumentation amplifier. International Journal of Electronics, 104,  https://doi.org/10.1080/00207217.2017.1296592.CrossRefGoogle Scholar
  13. 13.
    Nielsen J. H., Bruun E. (2004) A CMOS low-noise instrumentation amplifier using chopper modulation. Analog Integrated Circuits and Signal Processing, 42:65–75.CrossRefGoogle Scholar
  14. 14.
    Fan Q., Sebastiano F., Huijsing J. H., Makinwa K.A. (2011) 1.8 μW 60nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE Journal of Solid-State Circuits, 46(7):1534–1543.CrossRefGoogle Scholar
  15. 15.
    Bruschi P., Cesta F.D., Piotto M., Simmarano R. (2014) A very compact CMOS instrumentation amplifier with nearly rail-to-rail input common mode range. European Solid State Circuits Conference (ESCIRC), 2014.Google Scholar
  16. 16.
    Zamora-Mejía G., Martínez-Castillo J., Rocha-Pérez J. M., Díaz-Sánchez A. (2016) A current mode instrumentation amplifier based on the flipped voltage follower in 0.50 μm CMOS. Analog Integrated Circuits and Signal Processing,87(3):389–398.CrossRefGoogle Scholar
  17. 17.
    Douglas E. L., Lovely D. F., Luke D. M. (2004) A low-voltage current-mode instrumentation amplifier designed in a 0.18-micron CMOS technology. Canadian Conference on Electrical and Computer Engineering, 2004.Google Scholar
  18. 18.
    Safari L., Minaei S., Ferri G., Stornelli V. (2018) A low-voltage low-power instrumentation amplifier based on supply current sensing technique. AEU - International Journal of Electronics and Communications, 91:125–131.CrossRefGoogle Scholar
  19. 19.
    Safari L., Minaei S. (2017) A low-voltage low-power resistor-based current mirror and its applications. Journal of Circuits, Systems and Computers, 26(11),  https://doi.org/10.1142/S0218126617501808.CrossRefGoogle Scholar
  20. 20.
    Eldeeb M. A., Ghallab Y. H., Ismail Y., El-Ghitani H. (2018) A 0.4-V miniature CMOS current mode instrumentation amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(3): 261–265,CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leila Safari
    • 1
  • Giuseppe Ferri
    • 2
  • Shahram Minaei
    • 3
  • Vincenzo Stornelli
    • 2
  1. 1.TehranIran
  2. 2.University of L’AquilaL’aquilaItaly
  3. 3.Doğuş UniversityIstanbulTurkey

Personalised recommendations