Advertisement

fMRI and Tractographic Studies of Cognitive Systems in the Human Brain at the Norm and the Paranoid Schizophrenia

  • Vadim L. Ushakov
  • Vyacheslav A. Orlov
  • Denis G. Malakhov
  • Sergey I. Kartashov
  • Alexandra V. Maslennikova
  • Andrey Yu. Arkhipov
  • Valeria B. Strelez
  • Maria Arsalidou
  • Alexandr V. Vartanov
  • Georgy P. Kostyuk
  • Natalia V. Zakharova
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 799)

Abstract

This study is aimed at a systematic study of the work of neural networks of the human brain and their architecture in norm and in schizophrenia. To obtain the neurophysiological data, a unique complex of experimental equipment for world-class neurocognitive studies was used. The data obtained showed a significant decrease in the structural connectivity relationships for the rich club coefficient for a group of schizophrenic patients compared with the norm. Perception of emotionally negative visual and audio stimuli related to delusions in patients with schizophrenia does not lead to a significant decrease in BOLD signal as compared with the norm in Calcarine_L, Cerebelum_4_5_R, ParaHippocampal_LR, Precuneus_L, Temporal_Sup_R areas. The differences found in the structural and functional patterns of cognitive-affective disorders can serve as prognostic biomarkers in patients with schizophrenia and will make a significant contribution to the development of high-tech diagnostics in the early stages of mental illness.

Keywords

fMRI Rich-club Cognitive architecture Connectome Schizophrenia Hallucinatory-paranoid syndrome 

Notes

Acknowledgements

This study was partially supported by RFBR Grant ofi-m 17-29-02518 (the cognitive-effective structures of the human brain) and by the NRC “Kurchatov Institute” (11.07.2018 № 1649, MR compatible polygraphy). The authors are grateful to the MEPhI Academic Excellence Project for providing computing resources and facilities to perform experimental data processing.

References

  1. 1.
    Bogerts, B.: The temporolimbic system theory of positive schizophrenic symptoms. Schizophr. Bull. 23, 423–436 (1997)CrossRefGoogle Scholar
  2. 2.
    McKenna, P.J.: What works in schizophrenia: cognitive behaviour therapy is not effective. BMJ Br. Med. J. 333, 353 (2006)CrossRefGoogle Scholar
  3. 3.
    Romme, I.A.C., de Reus, M.A., Ophoff, R.A., Kahn, R.S., van den Heuvel, M.P.: Connectome disconnectivity and cortical gene expression in patients with schizophrenia. Biol. Psychiatry 81, 495–502 (2017)CrossRefGoogle Scholar
  4. 4.
    Karlsgodt, K.H., Sun, D., Cannon, T.D.: Structural and functional brain abnormalities in schizophrenia. Curr. Dir. Psychol. Sci. 19, 226–231 (2010)CrossRefGoogle Scholar
  5. 5.
    van den Heuvel, M.P., Mandl, R.C.W., Stam, C.J., Kahn, R.S., Hulshoff Pol, H.E.: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J. Neurosci. 30, 15915–15926 (2010)Google Scholar
  6. 6.
    Bohlken, M.M., Brouwer, R.M., Mandl, R.C.W., Van den Heuvel, M.P., Hedman, A.M., De Hert, M., et al.: Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry 73, 1–9 (2015)Google Scholar
  7. 7.
    van den Heuvel, M.P., Sporns O.: Rich-club organization of the human connectome. J. Neurosci. 31(44), 15775–15786 (2011)Google Scholar
  8. 8.
    Allen, E.A., Erhardt, E.B., Damaraju, E., Gruner, W., Segall, J.M., Silva, R.F., et al.: A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 5, 2 (2011)Google Scholar
  9. 9.
    Damaraju, E., Allen, E.A., Belger, A., Ford, J.M., McEwen, S., Mathalon, D.H., et al.: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin. 5, 298–308 (2014)CrossRefGoogle Scholar
  10. 10.
    Simon, J.J., Cordeiro, S.A., Weber, M.A., Friederich, H.C., Wolf, R.C., Weisbrod, M., et al.: Reward system dysfunction as a neural substrate of symptom expression across the general population and patients with schizophrenia. Schizophr. Bull. 41, 1370–1378 (2015)CrossRefGoogle Scholar
  11. 11.
    Lee, S.-K., Chun, J.W., Lee, J.S., Park, H.-J., Jung, Y.-C., Seok, J.-H., et al.: Abnormal neural processing during emotional salience attribution of affective asymmetry in patients with schizophrenia. PLoS One 9, e90792 (2014)CrossRefGoogle Scholar
  12. 12.
    Galderisi, S., Mucci, A., Volpe, U., Boutros, N.: Evidence-based medicine and electrophysiology in schizophrenia. Clin. EEG Neurosci. 40, 62–77 (2009)CrossRefGoogle Scholar
  13. 13.
    Adrian, E.D, Matthews, B.H.C.: The interpretation of potential waves in the cortex. J. Physiol. 81, 440–471 (1934)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vadim L. Ushakov
    • 1
    • 2
  • Vyacheslav A. Orlov
    • 1
  • Denis G. Malakhov
    • 1
  • Sergey I. Kartashov
    • 1
    • 2
  • Alexandra V. Maslennikova
    • 3
  • Andrey Yu. Arkhipov
    • 3
  • Valeria B. Strelez
    • 3
  • Maria Arsalidou
    • 4
  • Alexandr V. Vartanov
    • 5
  • Georgy P. Kostyuk
    • 6
  • Natalia V. Zakharova
    • 6
    • 7
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia
  3. 3.Institute of Higher Nervous Activity and Neurophysiology of RASMoscowRussia
  4. 4.National Research University Higher School of EconomicsMoscowRussia
  5. 5.Lomonosov Moscow State UniversityMoscowRussia
  6. 6.Alekseyev Psychiatric Hospital No. 1MoscowRussia
  7. 7.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations