Advertisement

Priority Evacuation from a Disk Using Mobile Robots

(Extended Abstract)
  • Jurek Czyzowicz
  • Konstantinos Georgiou
  • Ryan Killick
  • Evangelos Kranakis
  • Danny Krizanc
  • Lata Narayanan
  • Jaroslav Opatrny
  • Sunil Shende
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)

Abstract

We introduce and study a new search-type problem with (\(n+1\))-robots on a disk. The searchers (robots) all start from the center of the disk, have unit speed, and can communicate wirelessly. The goal is for a distinguished robot (the queen) to reach and evacuate from an exit that is hidden on the perimeter of the disk in as little time as possible. The remaining n robots (servants) are there to facilitate the queen’s objective and are not required to reach the hidden exit. We provide upper and lower bounds for the time required to evacuate the queen. Namely, we propose an algorithm specifying the trajectories of the robots which guarantees evacuation of the queen in time always better than \(2 + 4(\sqrt{2}-1) \frac{\pi }{n}\) for \(n \ge 4\) servants. We also demonstrate that for \(n \ge 4\) servants the queen cannot be evacuated in time less than \(2+\frac{\pi }{n}+\frac{2}{n^2}\).

Keywords

Mobile robots Priority Evacuation Exit Group search Disk Wireless communication Queen Servants 

References

  1. 1.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  3. 3.
    Baeza Yates, R., Culberson, J., Rawlins, G., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bampas, E., et al.: Linear search by a pair of distinct-speed robots. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 195–211. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48314-6_13CrossRefGoogle Scholar
  5. 5.
    Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)CrossRefGoogle Scholar
  7. 7.
    Bose, P., De Carufel, J.-L.: A general framework for searching on a line. In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 143–153. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30139-6_12CrossRefGoogle Scholar
  8. 8.
    Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the problem of searching on a line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 205–216. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40450-4_18CrossRefGoogle Scholar
  9. 9.
    Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57586-5_10CrossRefGoogle Scholar
  10. 10.
    Chrobak, M., Gasieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46078-8_14CrossRefGoogle Scholar
  11. 11.
    Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, Singapore, 4–7 January 2016, pp. 28:1–28:8 (2016)Google Scholar
  12. 12.
    Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45174-8_9CrossRefGoogle Scholar
  13. 13.
    Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72050-0_10CrossRefGoogle Scholar
  14. 14.
    Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. CoRR, abs/1805.03568 (2018)Google Scholar
  15. 15.
    Czyzowicz, J., et al.: God save the queen. In: 9th International Conference on Fun With Algorithms (FUN18) (2018)Google Scholar
  16. 16.
    Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18173-8_10CrossRefGoogle Scholar
  17. 17.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19662-6_13CrossRefGoogle Scholar
  18. 18.
    Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2), 342–355 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: FOCS, pp. 298–303. IEEE (1991)Google Scholar
  20. 20.
    Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast rendezvous on a cycle by agents with different speeds. Theor. Comput. Sci. 688, 77–85 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with one robot on a disk (track: wireless and geometry). In: Chrobak, M., Fernández Anta, A., Gasieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp. 80–94. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53058-1_6CrossRefGoogle Scholar
  23. 23.
    Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk - wireless and face-to-face communication models. In: Liberatore, F., Parlier, G.H., Demange, M. (eds.) ICORES 2017, Porto, Portugal, 23–25 February 2017, pp. 15–26. SciTePress (2017)Google Scholar
  24. 24.
    Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31(2), 577–600 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lamprou, I., Martin, R., Schewe, S.: Fast two-robot disk evacuation with wireless communication. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 1–15. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53426-7_1CrossRefGoogle Scholar
  26. 26.
    Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372, pp. 610–620. Springer, Heidelberg (1989).  https://doi.org/10.1007/BFb0035787CrossRefGoogle Scholar
  27. 27.
    Pattanayak, D., Ramesh, H., Mandal, P.S., Schmid, S.: Evacuating two robots from two unknown exits on the perimeter of a disk with wireless communication. In: ICDCN 2018, Varanasi, India, 4–7 January 2018, pp. 20:1–20:4 (2018)Google Scholar
  28. 28.
    Animation of algorithm 2 for \(n=4\), 13 February 2018. https://drive.google.com/open?id=1OhmWeqFZLFLiwQalvPoZSTg9Ah860mMn
  29. 29.
    Animation of algorithm 2 for \(n=8\), 13 February 2018. https://drive.google.com/open?id=10ntWmekJr5pTywEfpTNAw6uyxxrfpHsA

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Konstantinos Georgiou
    • 2
  • Ryan Killick
    • 3
  • Evangelos Kranakis
    • 3
  • Danny Krizanc
    • 4
  • Lata Narayanan
    • 5
  • Jaroslav Opatrny
    • 5
  • Sunil Shende
    • 6
  1. 1.Départemant d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.Department of MathematicsRyerson UniversityTorontoCanada
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada
  4. 4.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  5. 5.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada
  6. 6.Department of Computer ScienceRutgers UniversityCamdenUSA

Personalised recommendations