Advertisement

Gathering in the Plane of Location-Aware Robots in the Presence of Spies

  • Jurek Czyzowicz
  • Ryan Killick
  • Evangelos Kranakis
  • Danny Krizanc
  • Oscar Morale-Ponce
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)

Abstract

A set of mobile robots (represented as points) is distributed in the Cartesian plane. The collection contains an unknown subset of byzantine robots which are indistinguishable from the reliable ones. The reliable robots need to gather, i.e., arrive to a configuration in which at the same time, all of them occupy the same point on the plane. The robots are equipped with GPS devices and at the beginning of the gathering process they communicate the Cartesian coordinates of their respective positions to the central authority. On the basis of this information, without the knowledge of which robots are faulty, the central authority designs a trajectory for every robot. The central authority aims to provide the trajectories which result in the shortest possible gathering time of the healthy robots. The efficiency of a gathering strategy is measured by its competitive ratio, i.e., the maximal ratio between the time required for gathering achieved by the given trajectories and the optimal time required for gathering in the offline case, i.e., when the faulty robots are known to the central authority in advance. The role of the byzantine robots, controlled by the adversary, is to act so that the gathering is delayed and the resulting competitive ratio is maximized.

The objective of our paper is to propose efficient algorithms when the central authority is aware of an upper bound on the number of byzantine robots. We give optimal algorithms for collections of robots known to contain at most one faulty robot. When the proportion of byzantine robots is known to be less than one half or one third, we provide algorithms with small constant competitive ratios. We also propose algorithms with bounded competitive ratio in the case where the proportion of faulty robots is arbitrary.

Keywords

Byzantine Competitive ratio Gathering Location aware Reliable Robots 

References

  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alpern, S.: The rendezvous search problem. SIAM J. Control. Optim. 33(3), 673–683 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alpern, S.: Rendezvous search: a personal perspective. Oper. Res. 50(5), 772–795 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer, New York (2003).  https://doi.org/10.1007/b100809CrossRefzbMATHGoogle Scholar
  5. 5.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77974-2CrossRefzbMATHGoogle Scholar
  6. 6.
    Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chrystal, G.: On the problem to construct the minimum circle enclosing n given points in the plane. Proc. Edinb. Math. Soc. 3, 30–33 (1885)CrossRefGoogle Scholar
  8. 8.
    Chuangpishit, H., Czyzowicz, J., Kranakis, E., Krizanc, D.: Rendezvous on a line of faulty, location-aware robots. In: Proceedings 13th International Symposium on Algorithms and Experiments for Wireless Networks, Vienna, Austria. LNCS. Springer (2017)Google Scholar
  9. 9.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Collins, A., Czyzowicz, J., Gąsieniec, L., Kosowski, A., Martin, R.: Synchronous rendezvous for location-aware agents. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 447–459. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24100-0_42CrossRefGoogle Scholar
  13. 13.
    Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14162-1_42CrossRefGoogle Scholar
  14. 14.
    Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically optimal gathering on a grid. In: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, 11–13 July 2016, pp. 301–312. ACM (2016)Google Scholar
  15. 15.
    Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in \(\mathbb{R} ^2\) for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 187–200. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53426-7_14CrossRefGoogle Scholar
  16. 16.
    Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48971-0_30CrossRefGoogle Scholar
  17. 17.
    Czyzowicz, J., et al.: Search on a line by byzantine robots. In: 27th International Symposium on Algorithms and Computation, ISAAC 2016, Sydney, Australia, 12–14 December 2016. LNCS, pp. 27:1–27:12. Springer (2016)Google Scholar
  18. 18.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 405–414. ACM (2016)Google Scholar
  19. 19.
    Czyzowicz, J., Killick, R., Kranakis, E., Krizanc, D., Morale-Ponce, O.: Gathering in the plane of location-aware robots in the presence of spies. arXiv preprint arXiv:1712.02474 (2017)
  20. 20.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: Proceedings of the 29th PODC, Zurich, Switzerland, 25–28 July 2010, pp. 267–276. ACM (2010)Google Scholar
  21. 21.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Edelsbrunner, H.: Algorithms in Combinatorial Geometry, vol. 10. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  24. 24.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hromkovič, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in interconnection networks (broadcasting & gossiping). In: Du, D.Z., Hsu, D.F. (eds.) Combinatorial Network Theory. APOP, vol. 1, pp. 125–212. Springer, Boston (1996).  https://doi.org/10.1007/978-1-4757-2491-2_5CrossRefGoogle Scholar
  26. 26.
    Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of points in linear time. Discret. Comput. Geom. 12(3), 291–312 (1994)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780823_1CrossRefGoogle Scholar
  29. 29.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)zbMATHGoogle Scholar
  30. 30.
    Pelc, A.: DISC 2011 invited lecture: deterministic rendezvous in networks: survey of models and results. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 1–15. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24100-0_1CrossRefGoogle Scholar
  31. 31.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006).  https://doi.org/10.1007/11945529_24CrossRefGoogle Scholar
  33. 33.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)CrossRefGoogle Scholar
  35. 35.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61440-0_163CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Ryan Killick
    • 2
  • Evangelos Kranakis
    • 2
  • Danny Krizanc
    • 3
  • Oscar Morale-Ponce
    • 4
  1. 1.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  4. 4.Department of Computer ScienceCalifornia State UniversityLong BeachUSA

Personalised recommendations