Advertisement

On Knowledge and Communication Complexity in Distributed Systems

  • Daniel Pfleger
  • Ulrich SchmidEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)

Abstract

This paper contributes to exploring the connection between epistemic knowledge and communication complexity in distributed systems. We focus on Action Models, a well-known variant of dynamic epistemic logic, which allows to cleanly separate the state of knowledge of the processes and its update due to communication actions: Exactly like the set of possible global states, the possible actions are described by means of a Kripke model that specifies which communication actions are indistinguishable for which process. We first show that the number of connected components in the action model results in a lower bound for communication complexity. We then apply this result, in the restricted setting of a two processor system, for determining communication complexity lower bounds for solving a distributed computing problem \(\mathcal {P}\): We first determine some properties of the action model corresponding to any given protocol that solves \(\mathcal {P}\), and then use our action model communication complexity lower bounds. Finally, we demonstrate our approach by applying it to synchronous distributed function computation and to a simple instance of consensus in directed dynamic networks.

Keywords

Distributed systems Dynamic epistemic logic Communication complexity 

References

  1. 1.
    Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R., Sinha, P. (eds.) Distributed Computing and Networking. Lecture Notes in Computer Science, vol. 7730, pp. 225–239. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35668-1_16CrossRefGoogle Scholar
  2. 2.
    Alechina, N., Logan, B., Nguyen, H.N., Rakib, A.: Verifying time, memory and communication bounds in systems of reasoning agents. Synthese 169(2), 385–403 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ben-Zvi, I., Moses, Y.: Beyond lamport’s Happened-Before: on the role of time bounds in synchronous systems. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 421–436. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_42CrossRefGoogle Scholar
  4. 4.
    Ben-Zvi, I., Moses, Y.: Beyond Lamport’s happened-before: On time bounds and the ordering of events in distributed systems. J. ACM 61(2), 13:1–13:26 (2014).  https://doi.org/10.1145/2542181MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrading consensus and k-set agreement in directed dynamic networks. Theoretical Computer Science 726, 41–77 (2018).  https://doi.org/10.1016/j.tcs.2018.02.019, http://www.sciencedirect.com/science/article/pii/S0304397518301166MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cyriac, A., Krishnan, K.M.: Lower bound for the communication complexity of the russian cards problem. CoRR arXiv:abs/0805.1974 (2008)
  7. 7.
    Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and achieving symmetry in chains and rings. J. ACM 55(1), 3:1–3:28 (2008).  https://doi.org/10.1145/1326554.1326557MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Netherlands (2008).  https://doi.org/10.1007/978-1-4020-5839-4CrossRefzbMATHGoogle Scholar
  9. 9.
    Fagin, R., Moses, Y., Halpern, J., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (2003). https://books.google.at/books?id=xHmlRamoszMC
  10. 10.
    Gerbrandy, J.D.: Dynamic epistemic logic. Institute for Logic, Language and Computation (ILLC), University of Amsterdam (1997)Google Scholar
  11. 11.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. J. ACM 37(3), 549–587 (1990).  https://doi.org/10.1145/79147.79161MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hintikka, J.: Knowledge and belief: an introduction to the logic of the two notions. Contemporary philosophy, Cornell University Press (1962). https://books.google.de/books?id=N28OAAAAIAAJ
  13. 13.
    Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, pp. 355–364. PODC 2012. ACM, New York (2012).  https://doi.org/10.1145/2332432.2332504
  14. 14.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press (1997). https://books.google.at/books?id=yiV6pwAACAAJ
  15. 15.
    Moses, Y., Dolev, D., Halpern, J.Y.: Cheating husbands and other stories: a case study of knowledge, action, and communication. Distrib. Comput. 1(3), 167–176 (1986).  https://doi.org/10.1007/BF01661170CrossRefzbMATHGoogle Scholar
  16. 16.
    Pfleger, D., Schmid, U.: On knowledge and communication complexity in distributed systems. Technical report TUW-269752, Technische Universität Wien, Institute of Computer Engineering (2018). http://publik.tuwien.ac.at/files/publik_269752.pdf
  17. 17.
    Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007).  https://doi.org/10.1007/s11229-007-9168-7MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yao, A.C.: Some complexity questions related to distributive computing (preliminary report). In: Proceedings of the 11h Annual ACM Symposium on Theory of Computing, 30 April–2 May 1979, Atlanta, Georgia, USA, pp. 209–213 (1979).  https://doi.org/10.1145/800135.804414

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TU WienViennaAustria

Personalised recommendations