Advertisement

A New Equating Method Through Latent Variables

  • Inés VarasEmail author
  • Jorge González
  • Fernando A. Quintana
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 265)

Abstract

Comparability of measurements is an important practice in different fields. In educational measurement, equating methods are used to achieve the goal of having comparable scores from different test forms. Equated scores are obtained using the equating transformation which maps the scores on the scale of one test form into their equivalents on the scale of another for the case of sum scores. Such transformation has been typically computed using continuous approximations of the score distributions, leading to equated scores that are not necessarily defined on the original discrete scale. Considering scores as ordinal random variables, we propose a latent variable formulation based on a flexible Bayesian nonparametric model to perform an equipercentile-like equating that is capable to produce equated scores on the original discrete scale. The performance of our model is assessed using simulated data under the equivalent groups equating design. The results show that the proposed method has better performance with respect to a discrete version of estimated equated scores from traditional equating methods.

Keywords

Test equating Latent variable representation Bayesian nonparametric model 

Notes

Acknowledgements

Inés Varas was funded by CONICYT Doctorado Nacional grant 21151486. Jorge González was funded by FONDECYT grant 1150233. Fernando A. Quintana was partially funded by FONDECYT grant 1180034. This work was supported by Iniciativa Científica Milenio - Minecon Núcleo Milenio MiDaS.

References

  1. Aitchison, J., & Silvey, S. (1957). The generalization of probit analysis to the case of multiple responses. Biometrika, 44, 131–140.MathSciNetCrossRefGoogle Scholar
  2. Blackwell, D., & MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. The Annals of Statistics, 1(2), 353–355.MathSciNetCrossRefGoogle Scholar
  3. Braun, H., & Holland, P. (1982). Observed-score test equating: A mathematical analysis of some ets equating procedures. In P. Holland & D. Rubin (Eds.), Test equating (Vol. 1, pp. 9–49). New York: Academic Press.Google Scholar
  4. Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434–455.MathSciNetGoogle Scholar
  5. De Iorio, M., Müller, P., Rosner, G., & MacEachern, S. (2004). An ANOVA model for dependent random measures. Journal of American Statistical Association, 99, 205–215.MathSciNetCrossRefGoogle Scholar
  6. Ferguson, T. (1983). Bayesian density estimation by mixtures of normal distributions. In D. Siegmund, J. Rustage, & G. G. Rizvi (Eds), Recent advances in statistics: Papers in honor of Herman Chernoff on His sixtieth birthday (pp. 287–302). Bibliohound.Google Scholar
  7. Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209–230.MathSciNetCrossRefGoogle Scholar
  8. Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457–511.CrossRefGoogle Scholar
  9. Ghosh, S., Burns, C. B., Prager, D. L., Zhang, L., & Hui, G. (2018). On nonparametric estimation of the latent distribution for ordinal data. Computational Statistics and Data Analysis, 119, 86–98.MathSciNetCrossRefGoogle Scholar
  10. Ghosh, J., & Ramamoorthi, R. (2003). Bayesian Nonparametrics. New York: Springer.zbMATHGoogle Scholar
  11. González, J., Barrientos, A. F., & Quintana, F. A. (2015). Bayesian nonparametric estimation of test equating functions with covariates. Computational Statistics & Data Analysis, 89, 222–244.MathSciNetCrossRefGoogle Scholar
  12. González, J., & von Davier, M. (2013). Statistical models and inference for the true equating transformation in the context of local equating. Journal of Educational Measurement, 50(3), 315–320.CrossRefGoogle Scholar
  13. González, J., & Wiberg, M. (2017). Applying test equating methods using R. New York: Springer.CrossRefGoogle Scholar
  14. Hanson, T., & Johnson, W. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97(460), 1020–1033.MathSciNetCrossRefGoogle Scholar
  15. Ishwaran, H., & James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453), 161–173.MathSciNetCrossRefGoogle Scholar
  16. Karabatsos, G., & Walker, S. (2009). A Bayesian nonparametric approach to test equating. Psychometrika, 74(2), 211–232.MathSciNetCrossRefGoogle Scholar
  17. Kass, R. E., Carlin, B. P., Gelman, A., & Neal, R. M. (1998). Markov chain Monte Carlo in practice: A roundtable discussion. The American Statistician, 52(2), 93–100.MathSciNetGoogle Scholar
  18. Kolen, M., & Brennan, R. (2014). Test equating, scaling, and linking: Methods and practices (3rd ed.). New York: Springer.CrossRefGoogle Scholar
  19. Kottas, A., Muller, P., & Quintana, F. (2005). Nonparametric Bayesian modeling for multivariate ordinal data. Journal of Computational and Graphics Statistics, 14(3), 610–625.MathSciNetCrossRefGoogle Scholar
  20. Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modelling. The Annals of Statistics, 20(3), 1222–1235.MathSciNetCrossRefGoogle Scholar
  21. Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates I: Density estimates. The Annals of Statistics, 12, 351–357.MathSciNetCrossRefGoogle Scholar
  22. MacEachern, S. (1999). Dependent nonparametric processes. In ASA proceedings of the section on bayesian statistical science (pp. 50–55).Google Scholar
  23. MacEachern, S. (2000). Dependent Dirichlet processes (Tech. Rep.). Department of Statistics, The Ohio State University.Google Scholar
  24. Mauldin, R., Sudderth, W., & Williams, S. (1992). Polya trees and random distributions. The Annals of Statistics, 20(3), 1203–1221.MathSciNetCrossRefGoogle Scholar
  25. McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society. Series B, Statistical methodology, 42(2), 109–142.MathSciNetzbMATHGoogle Scholar
  26. McKelvey, R., & Zavoina, W. (1975). A statistical model for the analysis of ordinal dependent variables. Journal of Mathematical Sociology, 4, 103–120.MathSciNetCrossRefGoogle Scholar
  27. Pearson, K. (1901). VII. On the inheritance of characters not capable of exact quantitative measurement. Philosophical Transactions of the Royal Society A, 195, 79–150.CrossRefGoogle Scholar
  28. Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4, 639–650.MathSciNetzbMATHGoogle Scholar
  29. Shah, D. A., & Madden, L. V. (2004). Nonparametric analysis of ordinal data in designed factorial experiments. Phytopathology, 91(1), 33–43.CrossRefGoogle Scholar
  30. von Davier, A. A., Holland, P., & Thayer, D. (2004). The kernel method of test equating. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Inés Varas
    • 1
    • 2
    Email author
  • Jorge González
    • 1
    • 2
  • Fernando A. Quintana
    • 1
  1. 1.Departamento de EstadísticaPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Laboratorio Interdisciplinario de Estadística Social, LIES, Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations