Corneal Endothelium: Applied Anatomy

  • Francisco Arnalich-Montiel
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Corneal endothelium is derived from the neural crest, and it is the innermost layer of the cornea. It consists on a monolayer of flat cells on an amorphous collagenous membrane, Descemet’s membrane. It functions as a permeability barrier and as an active pump to generate an osmotic gradient to keep the relative stromal deturgescence (78% water content) required for corneal transparency and also participates in the synthesis of Descemet’s membrane. At birth there are over 3000 cells/mm2 that tend to decline with aging at approximately 0.6% pace reduction during the adult period. Nevertheless, a minimal numerical density of 400–500 cells/mm2 is required to sustain the pumping activity of the endothelium. Zonula occludens-1 (ZO-1), aquaporin 1, Na+/K+ pump, and neuron-specific enolase are classic markers of endothelial cells. Expression of these proteins is not unique of corneal endothelium, but the pattern subcellular distribution using these and other proteins such as N-cadherin, NCAM, integrin α3ß1, or the actin/myosin network can be used to distinguish these cells from the other corneal cell types. Specific identification of these cells is highly important to select culture subpopulation for cell therapies.


Corneal endothelium Corneal endothelium anatomy Corneal endothelium physiology Corneal endothelium immunohistochemistry 


Compliance with Ethical Requirements

Francisco Arnalich-Montiel declares no conflict of interest. No human or animal studies were carried out by the author for this article.


  1. 1.
    Tuft SJ, Coster DJ. The corneal endothelium. Eye (Lond). 1990;4(Pt 3):389–424.CrossRefGoogle Scholar
  2. 2.
    Meier S. Initiation of corneal differentiation prior to cornea-lens association. Cell Tissue Res. 1977;184(2):255–67.CrossRefGoogle Scholar
  3. 3.
    Zavala J, López Jaime GR, Rodríguez Barrientos CA, Valdez-Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye (Lond). 2013;27(5):579–88.CrossRefGoogle Scholar
  4. 4.
    Beebe DC, Coats JM. The lens organizes the anterior segment: specification of neural crest cell differentiation in the avian eye. Dev Biol. 2000;220(2):424–31.CrossRefGoogle Scholar
  5. 5.
    Gage PJ, Rhoades W, Prucka SK, Hjalt T. Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci. 2005;46(11):4200–8.CrossRefGoogle Scholar
  6. 6.
    Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–89.CrossRefGoogle Scholar
  7. 7.
    DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588–98.CrossRefGoogle Scholar
  8. 8.
    Murphy C, Alvarado J, Juster R. Prenatal and postnatal growth of the human Descemet’s membrane. Invest Ophthalmol Vis Sci. 1984;25(12):1402–15.PubMedGoogle Scholar
  9. 9.
    Stiemke MM, Edelhauser HF, Geroski DH. The developing corneal endothelium: correlation of morphology, hydration and Na/K ATPase pump site density. Curr Eye Res. 1991;10(2):145–56.CrossRefGoogle Scholar
  10. 10.
    Sobottka Ventura AC, Wälti R, Böhnke M. Corneal thickness and endothelial density before and after cataract surgery. Br J Ophthalmol. 2001;85(1):18–20.CrossRefGoogle Scholar
  11. 11.
    Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res. 1985;4(6):671–8.CrossRefGoogle Scholar
  12. 12.
    Rao SK, Ranjan Sen P, Fogla R, Gangadharan S, Padmanabhan P, Badrinath SS. Corneal endothelial cell density and morphology in normal Indian eyes. Cornea. 2000;19(6):820–3.CrossRefGoogle Scholar
  13. 13.
    Geroski DH, Matsuda M, Yee RW, Edelhauser HF. Pump function of the human corneal endothelium. Effects of age and cornea guttata. Ophthalmology. 1985;92(6):759–63.CrossRefGoogle Scholar
  14. 14.
    Bonanno JA. Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res. 2003;22(1):69–94.CrossRefGoogle Scholar
  15. 15.
    Puk O, Dalke C, Calzada-Wack J, Ahmad N, Klaften M, Wagner S, et al. Reduced corneal thickness and enlarged anterior chamber in a novel ColVIIIa2G257D mutant mouse. Invest Ophthalmol Vis Sci. 2009;50(12):5653–61.CrossRefGoogle Scholar
  16. 16.
    He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6(1):29047.CrossRefGoogle Scholar
  17. 17.
    Okumura N, Hirano H, Numata R, Nakahara M, Ueno M, Hamuro J, et al. Cell surface markers of functional phenotypic corneal endothelial cells. Invest Opthalmol Vis Sci. 2014;55(11):7610.CrossRefGoogle Scholar
  18. 18.
    Cheong YK, Ngoh ZX, Peh GSL, Ang H-P, Seah X-Y, Chng Z, et al. Identification of cell surface markers glypican-4 and CD200 that differentiate human corneal endothelium from stromal fibroblasts. Invest Opthalmol Vis Sci. 2013;54(7):4538–47.CrossRefGoogle Scholar
  19. 19.
    Ding V, Chin A, Peh G, Mehta JS, Choo A. Generation of novel monoclonal antibodies for the enrichment and characterization of human corneal endothelial cells (hCENC) necessary for the treatment of corneal endothelial blindness. MAbs. 2014;6(6):1439–52.CrossRefGoogle Scholar
  20. 20.
    Bartakova A, Alvarez-Delfin K, Weisman AD, Salero E, Raffa GA, Merkhofer RM, et al. Novel identity and functional markers for human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(6):2749–62.CrossRefGoogle Scholar
  21. 21.
    Yoshihara M, Ohmiya H, Hara S, Kawasaki S, Hayashizaki Y, Itoh M, et al. Discovery of molecular markers to discriminate corneal endothelial cells in the human body. PLoS One. 2015;10(3):e0117581. Kerkis I, editor.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francisco Arnalich-Montiel
    • 1
  1. 1.Vissum CorporationMadridSpain

Personalised recommendations