Advertisement

Technology-Related Beliefs and the Mathematics Classroom: Development of a Measurement Instrument for Pre-Service and In-Service Teachers

  • Marcel KlingerEmail author
  • Daniel Thurm
  • Christos Itsios
  • Joyce Peters-Dasdemir
Chapter

Abstract

Beliefs referring to teaching and learning mathematics with technology play an important role when teachers are integrating technology into their classrooms. However, there has been a lack of instruments to measure those beliefs in detail. In this paper, we contribute a detailed inventory to measure technology-related beliefs of in-service and pre-service teachers. This instrument—a questionnaire—is analyzed with data from 246 pre-service and 199 in-service teachers using confirmatory factor analysis. It is found that beliefs of in-service teachers can be measured in more detail than those of pre-service teachers, mainly due to a longer experience and a correspondingly more differentiated system of beliefs.

Keywords

Teachers’ beliefs Teachers’ technology-related beliefs Digital tools Technology in classrooms Measurement instrument Base model 

Notes

Acknowledgements

We would like to thank the reviewers and editors for their critical remarks.

References

  1. Barzel, B. (2012). Computeralgebra im Mathematikunterricht: Ein Mehrwert – aber wann? Münster: Waxmann.Google Scholar
  2. Barzel, B., Hußmann, S., & Leuders, T. (2005). Computer, Internet & Co im Mathematikunterricht. Berlin: Cornelsen Scriptor.Google Scholar
  3. Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft, 9(4), 469–520.CrossRefGoogle Scholar
  4. Bromme, R. (2005). The ‘Collective Student’ as the cognitive reference point of teachers’ thinking about their students in the classroom. In P. M. Denicolo & M. Kompf (Eds.), Teacher thinking and professional action (pp. 31–39). London: Routledge.Google Scholar
  5. Bühner, M. (2011). Einführung in die Test- und Fragebogenkonstruktion. München: Pearson Studium.Google Scholar
  6. Dewey, B. L., Singletary, T. J., & Kinzel, M. T. (2009). Graphing calculator use in algebra teaching. School Science and Mathematics, 109(7), 383–393.CrossRefGoogle Scholar
  7. DMV, GDM, & MNU. (2008). Standards für die Lehrerbildung im Fach Mathematik: Empfehlungen von DMV, GDM und MNU, Juni 2008. Mitteilungen der DMV, 16, 149–159.Google Scholar
  8. Doerr, H. M., & Zangor, R. (2000). Creating meaning for and with the graphing calculator. Educational Studies in Mathematics, 41(2), 143–163.CrossRefGoogle Scholar
  9. Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 763–774.CrossRefGoogle Scholar
  10. Goldin, G., Rösken, B., & Törner, G. (2009). Beliefs – no longer a hidden variable in mathematical teaching and learning processes. In J. Maaß & W. Schlöglmann (Eds.), Beliefs and attitudes in mathematics education: new research results (pp. 1–18). Rotterdam: Sense.Google Scholar
  11. Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern. Journal für Mathematik-Didaktik, 19(1), 3–45.CrossRefGoogle Scholar
  12. Handal, B., Cavanagh, M., Wood, L., & Petocz, P. (2011). Factors leading to the adoption of a learning technology: The case of graphics calculators. Australasian Journal of Educational Technology, 27(2), 343–360.CrossRefGoogle Scholar
  13. Heintz, G., Elschenbroich, H.-J., Laakmann, H., Langlotz, H., Schacht, F., & Schmidt, R. (2014). Digitale Werkzeugkompetenzen im Mathematikunterricht. Der mathematische und naturwissenschaftliche Unterricht, 67(5), 300–306.Google Scholar
  14. Hollar, J. C., & Norwood, K. (1999). The effects of a graphing-approach intermediate algebra curriculum on students' understanding of function. Journal for Research in Mathematics Education, 30(2), 220–226.CrossRefGoogle Scholar
  15. Klinger, M. (2018). Funktionales Denken beim Übergang von der Funktionenlehre zur Analysis: Entwicklung eines Testinstruments und empirische Befunde aus der gymnasialen Oberstufe. Wiesbaden: Springer Spektrum.Google Scholar
  16. Kuntze, S., & Dreher, A. (2013). Pedagogical content knowledge and views of in-service and pre-service teachers related to computer use in the mathematics classroom. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 217–224). Kiel: PME.Google Scholar
  17. Laakmann, H. (2008). Multirepräsentationsprogramme im Mathematikunterricht: Neue Möglichkeiten durch freien Wechsel der Werkzeuge. Der Mathematikunterricht, 54(6), 44–49.Google Scholar
  18. Mackey, K. (1999). Do we need calculators? In Z. Usiskin (Ed.), Mathematics education dialogues (p. 3). Reston: NCTM.Google Scholar
  19. Peschek, W. (1999). Mathematische Bildung meint auch Verzicht auf Wissen. In G. Kadunz, G. Ossimitz, W. Peschek, E. Schneider, & B. Winkelmann (Eds.), Mathematische Bildung und neue Technologien: Vorträge beim 8. Internationalen Symposium zur Didaktik der Mathematik, Universität Klagenfurt, 28.9. – 2.10.1998 (pp. 263–270). Leipzig: Teubner.CrossRefGoogle Scholar
  20. Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester (Ed.), Second hand-book of research on mathematics teaching and learning (Vol. 1, pp. 257–315). Charlotte: IAP.Google Scholar
  21. Pierce, R., Ball, L., & Stacey, K. (2009). Is it worth using CAS for symbolic algebra manipulation in the middle secondary years? Some teachers’ views. International Journal of Science and Mathematics Education, 7(6), 1149–1172.CrossRefGoogle Scholar
  22. Prüfer, P., & Rexroth, M. (2005). Kognitive Interviews, ZUMA How-to-Reihe, Nr. 15. http://www.gesis.org/fileadmin/upload/forschung/publikationen/gesis_reihen/howto/How_to15PP_MR.pdf (Retrieved: 05/31/2018).
  23. Rögler, P. (2014). Überzeugungen von Mathematiklehrkräften als Basis zur Entwicklung von Lehrerfortbildung zu Technologien im Unterricht. In J. Roth & J. Ames (Eds.), Beiträge zum Mathematikunterricht 2014: Beiträge zur 48. Jahrestagung der Gesellschaft für Didaktik der Mathematik vom 10. bis 14. März 2014 in Koblenz (Vol. 2, pp. 983–986). Münster: WTM.Google Scholar
  24. Rögler, P. (2015). Technologiebezogene Überzeugungen bei Studierenden des Lehramts Mathematik: Adaption und Überprüfung eines Messinstruments (Unpublished master’s thesis, Pädagogische Hochschule Freiburg, Freiburg).Google Scholar
  25. Rögler, P., Barzel, B., & Eichler, A. (2013). Teachers’ beliefs referring to teaching with technology. In A. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, p. 154). Kiel: PME.Google Scholar
  26. Stimmt, E. (1997). Graphing calculators in high school mathematics. Journal of Computers in Mathematics and Science Teaching, 16(2), 269–289.Google Scholar
  27. Thurm, D. (2017). Psychometric evaluation of a questionnaire measuring teacher beliefs regarding teaching with technology. In B. Kaur et al. (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 265–272). Singapore: PME.Google Scholar
  28. Thurm, D. (2018). Teacher beliefs and practice when teaching with technology: A latent profile analysis. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in lower secondary mathematics education: Tools, topics and trends (pp. 409–419). Cham: Springer.CrossRefGoogle Scholar
  29. Thurm, D., Klinger, M., & Barzel, B. (2015). How to professionalize teachers to use technology in a meaningful way–design research of a CPD program. In S. Carreira & N. Amado (Eds.), Proceedings of the 12th International Conference on Technology in Mathematics Teaching: ICTMT 12 (pp. 335–343). Faro: University of Algarve.Google Scholar
  30. Thurm, D., Klinger, M., Barzel, B., & Rögler, P. (2017). Überzeugungen zum Technologieeinsatz im Mathematikunterricht: Entwicklung eines Messinstruments für Lehramtsstudierende und Lehrkräfte. Mathematica Didactica, 40(1), 19–35.Google Scholar
  31. Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education–a perspective of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169–1207). Charlotte: Information Age.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marcel Klinger
    • 1
    Email author
  • Daniel Thurm
    • 1
  • Christos Itsios
    • 1
  • Joyce Peters-Dasdemir
    • 1
  1. 1.University of Duisburg-EssenEssenGermany

Personalised recommendations