Advertisement

Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection

  • Si-Qi Liu
  • Xiangyuan Lan
  • Pong C. Yuen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11220)

Abstract

3D mask face presentation attack, as a new challenge in face recognition, has been attracting increasing attention. Recently, remote Photoplethysmography (rPPG) is employed as an intrinsic liveness cue which is independent of the mask appearance. Although existing rPPG-based methods achieve promising results on both intra and cross dataset scenarios, they may not be robust enough when rPPG signals are contaminated by noise. In this paper, we propose a new liveness feature, called rPPG correspondence feature (CFrPPG) to precisely identify the heartbeat vestige from the observed noisy rPPG signals. To further overcome the global interferences, we propose a novel learning strategy which incorporates the global noise within the CFrPPG feature. Extensive experiments indicate that the proposed feature not only outperforms the state-of-the-art rPPG based methods on 3D mask attacks but also be able to handle the practical scenarios with dim light and camera motion.

Keywords

Face presentation attack detection 3D mask attack Remote photoplethysmography 

Notes

Acknowledgement

This project is partially supported by Hong Kong RGC General Research Fund HKBU 12201215.

References

  1. 1.
    Rattani, A., Poh, N., Ross, A.: Analysis of user-specific score characteristics for spoof biometric attacks. In: CVPRW (2012)Google Scholar
  2. 2.
    Evans, N.W., Kinnunen, T., Yamagishi, J.: Spoofing and countermeasures for automatic speaker verification. In: Interspeech, pp. 925–929 (2013)Google Scholar
  3. 3.
    Pavlidis, I., Symosek, P.: The imaging issue in an automatic face/disguise detection system. In: Computer Vision Beyond the Visible Spectrum: Methods and Applications (2000)Google Scholar
  4. 4.
    Tan, X., Li, Y., Liu, J., Jiang, L.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 504–517. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15567-3_37CrossRefGoogle Scholar
  5. 5.
    Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using micro-texture analysis. In: IJCB (2011)Google Scholar
  6. 6.
    Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: IJCB (2011)Google Scholar
  7. 7.
    Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: ICB (2012)Google Scholar
  8. 8.
    Pan, G., Sun, L., Wu, Z., Lao, S.: Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: ICCV (2007)Google Scholar
  9. 9.
    de Freitas Pereira, T., Komulainen, J., Anjos, A., De Martino, J.M., Hadid, A., Pietikäinen, M., Marcel, S.: Face liveness detection using dynamic texture. EURASIP J. Image Video Process. 2014(1), 1–15 (2014)CrossRefGoogle Scholar
  10. 10.
    Kose, N., Dugelay, J.L.: Mask spoofing in face recognition and countermeasures. Image Vis. Comput. 32(10), 779–789 (2014)CrossRefGoogle Scholar
  11. 11.
    Yi, D., Lei, Z., Zhang, Z., Li, S.Z.: Face anti-spoofing: multi-spectral approach. In: Marcel, S., Nixon, M.S., Li, S.Z. (eds.) Handbook of Biometric Anti-Spoofing. ACVPR, pp. 83–102. Springer, London (2014).  https://doi.org/10.1007/978-1-4471-6524-8_5CrossRefGoogle Scholar
  12. 12.
    Kose, N., Dugelay, J.L.: Shape and texture based countermeasure to protect face recognition systems against mask attacks. In: CVPRW (2013)Google Scholar
  13. 13.
    Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. 10(4), 746–761 (2015)CrossRefGoogle Scholar
  14. 14.
    Boulkenafet, Z., Komulainen, J., Hadid, A.: Face spoofing detection using colour texture analysis. IEEE Trans. Inf. Forensics Secur. 11(8), 1818–1830 (2016)CrossRefGoogle Scholar
  15. 15.
    Galbally, J., Marcel, S., Fierrez, J.: Image quality assessment for fake biometric detection: application to Iris, fingerprint, and face recognition. IEEE Trans. Image Process. 23(2), 710–724 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Komulainen, J., Hadid, A., Pietikainen, M.: Context based face anti-spoofing. In: BTAS (2013)Google Scholar
  17. 17.
    Kollreider, K., Fronthaler, H., Faraj, M.I., Bigun, J.: Real-time face detection and motion analysis with application in liveness assessment. IEEE Trans. Inf. Forensics Secur. 2(3), 548–558 (2007)CrossRefGoogle Scholar
  18. 18.
    Erdogmus, N., Marcel, S.: Spoofing face recognition with 3D masks. IEEE Trans. Inf. Forensics Secur. 9(7), 1084–1097 (2014)CrossRefGoogle Scholar
  19. 19.
    Liu, S., Yuen, P.C., Zhang, S., Zhao, G.: 3D mask face anti-spoofing with remote photoplethysmography. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 85–100. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46478-7_6CrossRefGoogle Scholar
  20. 20.
    Li, X., Komulainen, J., Zhao, G., Yuen, P.C., Pietikäinen, M.: Generalized face anti-spoofing by detecting pulse from face videos. In: ICPR (2016)Google Scholar
  21. 21.
    Lempe, G., Zaunseder, S., Wirthgen, T., Zipser, S., Malberg, H.: Roi selection for remote photoplethysmography. In: Bildverarbeitung für die Medizin 2013. Springer, pp. 99–103 (2013)Google Scholar
  22. 22.
    Agarwal, A., Singh, R., Vatsa, M.: Face anti-spoofing using haralick features. In: BTAS (2016)Google Scholar
  23. 23.
    Liu, S., Yang, B., Yuen, P.C., Zhao, G.: A 3D mask face anti-spoofing database with real world variations. In: CVPRW (2016)Google Scholar
  24. 24.
    Patel, K., Han, H., Jain, A.K., Ott, G.: Live face video vs. spoof face video: use of moiré patterns to detect replay video attacks. In: ICB (2015)Google Scholar
  25. 25.
    Menotti, D., Chiachia, G., Pinto, A., Schwartz, W.R., Pedrini, H., Falcão, A.X., Rocha, A.: Deep representations for Iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 10(4), 864–879 (2015)CrossRefGoogle Scholar
  26. 26.
    Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing. arXiv preprint arXiv:1408.5601 (2014)
  27. 27.
    Agarwal, A., Yadav, D., Kohli, N., Singh, R., Vatsa, M., Noore, A.: Face presentation attack with latex masks in multispectral videos. In: CVPRW (2017)Google Scholar
  28. 28.
    Bharadwaj, S., Dhamecha, T.I., Vatsa, M., Singh, R.: Computationally efficient face spoofing detection with motion magnification. In: CVPR (2013)Google Scholar
  29. 29.
    Erdogmus, N., Marcel, S.: Spoofing in 2D face recognition with 3D masks and anti-spoofing with kinect. In: BTAS (2013)Google Scholar
  30. 30.
    Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition based on optical flow field. In: IASP (2009)Google Scholar
  31. 31.
    Yan, J., Zhang, Z., Lei, Z., Yi, D., Li, S.Z.: Face liveness detection by exploring multiple scenic clues. In: ICARCV (2012)Google Scholar
  32. 32.
    Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18(10), 10762–10774 (2010)CrossRefGoogle Scholar
  33. 33.
    de Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rppg. IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013)CrossRefGoogle Scholar
  34. 34.
    Li, X., Chen, J., Zhao, G., Pietikainen, M.: Remote heart rate measurement from face videos under realistic situations. In: CVPR (2014)Google Scholar
  35. 35.
    Tulyakov, S., Alameda-Pineda, X., Ricci, E., Yin, L., Cohn, J.F., Sebe, N.: Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In: CVPR (2016)Google Scholar
  36. 36.
    Nowara, E.M., Sabharwal, A., Veeraraghavan, A.: Ppgsecure: biometric presentation attack detection using photopletysmograms. In: FG (2017)Google Scholar
  37. 37.
    Shelley, K., Shelley, S.: Pulse oximeter waveform: photoelectric plethysmography. In: Lake, C., Hines, R., Blitt, C. (eds.) Clinical Monitoring, pp. 420–428. WB Saunders Company (2001)Google Scholar
  38. 38.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with Kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33765-9_50CrossRefGoogle Scholar
  39. 39.
    Baltrusaitis, T., Robinson, P., Morency, L.P.: Constrained local neural fields for robust facial landmark detection in the wild. In: ICCVW (2013)Google Scholar
  40. 40.
    Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: BIOSIG (2012)Google Scholar
  41. 41.
    Boulkenafet, Z., Komulainen, J., Hadid, A.: Face anti-spoofing based on color texture analysis. In: ICIP (2015)Google Scholar
  42. 42.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceHong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations