Advertisement

Deep Factorised Inverse-Sketching

  • Kaiyue PangEmail author
  • Da Li
  • Jifei Song
  • Yi-Zhe Song
  • Tao Xiang
  • Timothy M. Hospedales
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11219)

Abstract

Modelling human free-hand sketches has become topical recently, driven by practical applications such as fine-grained sketch based image retrieval (FG-SBIR). Sketches are clearly related to photo edge-maps, but a human free-hand sketch of a photo is not simply a clean rendering of that photo’s edge map. Instead there is a fundamental process of abstraction and iconic rendering, where overall geometry is warped and salient details are selectively included. In this paper we study this sketching process and attempt to invert it. We model this inversion by translating iconic free-hand sketches to contours that resemble more geometrically realistic projections of object boundaries, and separately factorise out the salient added details. This factorised re-representation makes it easier to match a free-hand sketch to a photo instance of an object. Specifically, we propose a novel unsupervised image style transfer model based on enforcing a cyclic embedding consistency constraint. A deep FG-SBIR model is then formulated to accommodate complementary discriminative detail from each factorised sketch for better matching with the corresponding photo. Our method is evaluated both qualitatively and quantitatively to demonstrate its superiority over a number of state-of-the-art alternatives for style transfer and FG-SBIR.

References

  1. 1.
    Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
  2. 2.
    Berger, I., Shamir, A., Mahler, M., Carter, E., Hodgins, J.: Style and abstraction in portrait sketching. TOG (2013)Google Scholar
  3. 3.
    Bui, T., Collomosse, J.: Scalable sketch-based image retrieval using color gradient features. In: ICCV Workshops (2015)Google Scholar
  4. 4.
    Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? SIGGRAPH (2012)Google Scholar
  5. 5.
    Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.: Sketch-based image retrieval: benchmark and bag-of-features descriptors. TVCG (2011)Google Scholar
  6. 6.
    Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. (1985)Google Scholar
  7. 7.
    Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)Google Scholar
  8. 8.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS (2014)Google Scholar
  9. 9.
    Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NIPS (2017)Google Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)Google Scholar
  11. 11.
    Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS (2017)Google Scholar
  12. 12.
    Hu, C., Li, D., Song, Y.Z., Xiang, T., Hospedales, T.: Sketch-a-classifier: sketch-based photo classifier generation. In: CVPR (2018)Google Scholar
  13. 13.
    Hu, R., Collomosse, J.: A performance evaluation of gradient field hog descriptor for sketch based image retrieval. CVIU (2013)Google Scholar
  14. 14.
    Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)Google Scholar
  15. 15.
    Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV (2016)Google Scholar
  16. 16.
    Kim, T., Cha, M., Kim, H., Lee, J., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017)Google Scholar
  17. 17.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  18. 18.
    Korshunova, I., Shi, W., Dambre, J., Theis, L.: Fast face-swap using convolutional neural networks. In: ICCV (2017)Google Scholar
  19. 19.
    Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)Google Scholar
  20. 20.
    Li, Y., Hospedales, T.M., Song, Y.Z., Gong, S.: Fine-grained sketch-based image retrieval by matching deformable part models. In: BMVC (2014)Google Scholar
  21. 21.
    Li, Y., Song, Y.Z., Hospedales, T.M., Gong, S.: Free-hand sketch synthesis with deformable stroke models. IJCV (2017)Google Scholar
  22. 22.
    Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through deep image analogy. SIGGRAPH (2017)Google Scholar
  23. 23.
    Liu, L., Shen, F., Shen, Y., Liu, X., Shao, L.: Deep sketch hashing: fast free-hand sketch-based image retrieval. In: CVPR (2017)Google Scholar
  24. 24.
    Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017)Google Scholar
  25. 25.
    Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)Google Scholar
  26. 26.
    Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: CVPR (2017)Google Scholar
  27. 27.
    Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: ICCV (2017)Google Scholar
  28. 28.
    Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)Google Scholar
  29. 29.
    Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
  30. 30.
    Muhammad, U., Yang, Y., Song, Y.Z., Xiang, T., Hospedales, T.M.: Learning deep sketch abstraction. In: CVPR (2018)Google Scholar
  31. 31.
    Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier gans. In: ICML (2017)Google Scholar
  32. 32.
    Pang, K., Song, Y.Z., Xiang, T., Hospedales, T.M.: Cross-domain generative learning for fine-grained sketch-based image retrieval. In: BMVC (2017)Google Scholar
  33. 33.
    Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML (2016)Google Scholar
  34. 34.
    Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: NIPS (2016)Google Scholar
  35. 35.
    Sangkloy, P., Burnell, N., Ham, C., Hays, J.: The sketchy database: learning to retrieve badly drawn bunnies. SIGGRAPH (2016)Google Scholar
  36. 36.
    Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)Google Scholar
  37. 37.
    Shen, Y., Liu, L., Shen, F., Shao, L.: Zero-shot sketch-image hashing. In: CVPR (2018)Google Scholar
  38. 38.
    Song, J., Pang, K., Song, Y.Z., Xiang, T., Hospedales, T.M.: Learning to sketch with shortcut cycle consistency. In: CVPR (2018)Google Scholar
  39. 39.
    Song, J., Qian, Y., Song, Y.Z., Xiang, T., Hospedales, T.: Deep spatial-semantic attention for fine-grained sketch-based image retrieval. In: ICCV (2017)Google Scholar
  40. 40.
    Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2image: conditional image generation from visual attributes. In: ECCV (2016)Google Scholar
  41. 41.
    Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: Unsupervised dual learning for image-to-image translation. In: ICCV (2017)Google Scholar
  42. 42.
    Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: CVPR (2014)Google Scholar
  43. 43.
    Yu, Q., Liu, F., Song, Y.Z., Xiang, T., Hospedales, T.M., Loy, C.C.: Sketch me that shoe. In: CVPR (2016)Google Scholar
  44. 44.
    Yu, Q., Song, Y.Z., Xiang, T., Hospedales, T.M.: SketchX! - Shoe/Chair fine-grained SBIR dataset. http://sketchx.eecs.qmul.ac.uk (2017)
  45. 45.
    Yu, Q., Yang, Y., Liu, F., Song, Y.Z., Xiang, T., Hospedales, T.M.: Sketch-a-net: a deep neural network that beats humans. IJCV (2017)Google Scholar
  46. 46.
    Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.: Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)Google Scholar
  47. 47.
    Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: ECCV (2016)Google Scholar
  48. 48.
    Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)Google Scholar
  49. 49.
    Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: ECCV (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kaiyue Pang
    • 1
    Email author
  • Da Li
    • 1
  • Jifei Song
    • 1
  • Yi-Zhe Song
    • 1
  • Tao Xiang
    • 1
  • Timothy M. Hospedales
    • 1
    • 2
  1. 1.SketchX, Queen Mary University of LondonLondonUK
  2. 2.The University of EdinburghEdinburghUK

Personalised recommendations