X-Ray Computed Tomography Through Scatter

  • Adam Geva
  • Yoav Y. SchechnerEmail author
  • Yonatan Chernyak
  • Rajiv Gupta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11218)


In current Xray CT scanners, tomographic reconstruction relies only on directly transmitted photons. The models used for reconstruction have regarded photons scattered by the body as noise or disturbance to be disposed of, either by acquisition hardware (an anti-scatter grid) or by the reconstruction software. This increases the radiation dose delivered to the patient. Treating these scattered photons as a source of information, we solve an inverse problem based on a 3D radiative transfer model that includes both elastic (Rayleigh) and inelastic (Compton) scattering. We further present ways to make the solution numerically efficient. The resulting tomographic reconstruction is more accurate than traditional CT, while enabling significant dose reduction and chemical decomposition. Demonstrations include both simulations based on a standard medical phantom and a real scattering tomography experiment.


CT Xray Inverse problem Elastic/inelastic scattering 



We thank V. Holodovsky, A. Levis, M. Sheinin, A. Kadambi, O. Amit, Y. Weissler for fruitful discussions, A. Cramer, W. Krull, D. Wu, J. Hecla, T. Moulton, and K. Gendreau for engineering the static CT scanner prototype, and I. Talmon and J. Erez for technical support. YYS is a Landau Fellow - supported by the Taub Foundation. His work is conducted in the Ollendorff Minerva Center. Minerva is funded by the BMBF. This research was supported by the Israeli Ministry of Science, Technology and Space (Grant 3-12478). RG research was partially supported by the following grants: Air Force Contract Number FA8650-17-C-9113; US Army USAMRAA Joint Warfighter Medical Research Program, Contract No. W81XWH-15-C-0052; Congressionally Directed Medical Research Program W81XWH-13-2-0067.

Supplementary material

474202_1_En_3_MOESM1_ESM.pdf (633 kb)
Supplementary material 1 (pdf 632 KB)


  1. 1.
    Agostinelli, S., et al.: Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrometers, Detect. Assoc. Equip. 506(3), 250–303 (2003)CrossRefGoogle Scholar
  2. 2.
    Aides, A., Schechner, Y.Y., Holodovsky, V., Garay, M.J., Davis, A.B.: Multi sky-view 3D aerosol distribution recovery. Opt. Express 21(22), 25820–25833 (2013)CrossRefGoogle Scholar
  3. 3.
    Andersen, A., Kak, A.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94 (1984)CrossRefGoogle Scholar
  4. 4.
    Apostolakis, J., Giani, S., Maire, M., Nieminen, P., Pia, M.G., Urbàn, L.: Geant4 low energy electromagnetic models for electrons and photons. CERN-OPEN-99-034, August 1999Google Scholar
  5. 5.
    Arendtsz, N.V., Hussein, E.M.A.: Energy-spectral compton scatter imaging - part 1: theory and mathematics. IEEE Trans. Nucl. Sci. 42, 2155–2165 (1995)CrossRefGoogle Scholar
  6. 6.
    Biggs, F., Lighthill, R.: Analytical approximations for X-ray cross sections. Preprint Sandia Laboratory, SAND 87–0070 (1990)Google Scholar
  7. 7.
    Bor, D., Birgul, O., Onal, U., Olgar, T.: Investigation of grid performance using simple image quality tests. J. Med. Phys. 41, 21–28 (2016)CrossRefGoogle Scholar
  8. 8.
    Brusa, D., Stutz, G., Riveros, J., Salvat, F., Fernández-Varea, J.: Fast sampling algorithm for the simulation of photon compton scattering. Nucl. Instrum. Methods Phys. Res., Sect. A: Accel., Spectrometers, Detect. Assoc. Equip. 379(1), 167–175 (1996)CrossRefGoogle Scholar
  9. 9.
    Buzug, T.M.: Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  10. 10.
    Cong, W., Wang, G.: X-ray scattering tomography for biological applications. J. X-Ray Sci. Technol. 19(2), 219–227 (2011)Google Scholar
  11. 11.
    Cook, E., Fong, R., Horrocks, J., Wilkinson, D., Speller, R.: Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study. Appl. Radiat. Isot. 65(8), 959–967 (2007)CrossRefGoogle Scholar
  12. 12.
    Geva, A., Schechner, Y., Chernyak, Y., Gupta, R.: X-ray computed tomography through scatter: Supplementary material. In: Ferrari, V. (ed.) ECCV 2018, Part XII. LNCS, vol. 11218, pp. 37–54. Springer, Cham (2018)Google Scholar
  13. 13.
    Gkioulekas, I., Levin, A., Zickler, T.: An evaluation of computational imaging techniques for heterogeneous inverse scattering. In: European Conference on Computer Vision (ECCV) (2016)Google Scholar
  14. 14.
    Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., Levin, A.: Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32, 162 (2013)Google Scholar
  15. 15.
    Gong, H., Yan, H., Jia, X., Li, B., Wang, G., Cao, G.: X-ray scatter correction for multi-source interior computed tomography. Med. Phys. 44, 71–83 (2017)CrossRefGoogle Scholar
  16. 16.
    Gordon, R., Bender, R., Herman, G.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–476 (1970)CrossRefGoogle Scholar
  17. 17.
    Gu, J., Nayar, S.K., Grinspun, E., Belhumeur, P.N., Ramamoorthi, R.: Compressive structured light for recovering inhomogeneous participating media. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 1–1 (2013)Google Scholar
  18. 18.
    Heide, F., Xiao, L., Kolb, A., Hullin, M.B., Heidrich, W.: Imaging in scattering media using correlation image sensors and sparse convolutional coding. Opt. Express 22(21), 26338–26350 (2014)CrossRefGoogle Scholar
  19. 19.
    Holodovsky, V., Schechner, Y.Y., Levin, A., Levis, A., Aides, A.: In-situ multi-view multi-scattering stochastic tomography. In: IEEE International Conference on Computational Photography (ICCP) (2016)Google Scholar
  20. 20.
    Honda, M., Kikuchi, K., Komatsu, K.I.: Method for estimating the intensity of scattered radiation using a scatter generation model. Med. Phys. 18(2), 219–226 (1991)CrossRefGoogle Scholar
  21. 21.
    Hubbell, J.H., Gimm, H.A., Øverbø, I.: Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV to 100 GeV photons in elements Z = 1 to 100. J. Phys. Chem. Ref. Data 9(4), 1023–1148 (1980)CrossRefGoogle Scholar
  22. 22.
    Hussein, E.M.A.: On the intricacy of imaging with incoherently-scattered radiation. Nucl. Inst. Methods Phys. Res. B 263, 27–31 (2007)CrossRefGoogle Scholar
  23. 23.
    Kawrakow, I., Rogers, D.W.O.: The EGSnrc code system: Monte carlo simulation of electron and photon transport. NRC Publications Archive (2000)Google Scholar
  24. 24.
    Kimura, A., Tanaka, S., Aso, T., Yoshida, H., Kanematsu, N., Asai, M., Sasaki, T.: DICOM interface and visualization tool for Geant4-based dose calculation. IEEE Nucl. Sci. Symp. Conf. Rec. 2, 981–984 (2005)Google Scholar
  25. 25.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations (ICLR) (2015)Google Scholar
  26. 26.
    Klein, O., Nishina, Y.: Über die streuung von strahlung durch freie elektronen nach der neuen relativistischen quantendynamik von dirac. Zeitschrift für Physik 52(11), 853–868 (1929)CrossRefGoogle Scholar
  27. 27.
    Kyriakou, Y., Riedel, T., Kalender, W.A.: Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT. Phys. Med. Biol. 51(18), 4567 (2006)CrossRefGoogle Scholar
  28. 28.
    Kyriakou, Y., Kalender, W.A.: Efficiency of antiscatter grids for flat-detector CT. Phys. Med. Biol. 52(20), 6275 (2007)CrossRefGoogle Scholar
  29. 29.
    Levis, A., Schechner, Y.Y., Aides, A., Davis, A.B.: Airborne three-dimensional cloud tomography. In: IEEE International Conference on Computer Vision (ICCV) (2015)Google Scholar
  30. 30.
    Levis, A., Schechner, Y.Y., Davis, A.B.: Multiple-scattering microphysics tomography. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  31. 31.
    Lionheart, W.R.B., Hjertaker, B.T., Maad, R., Meric, I., Coban, S.B., Johansen, G.A.: Non-linearity in monochromatic transmission tomography. arXiv: 1705.05160 (2017)
  32. 32.
    Lo, J.Y., Floyd Jr., C.E., Baker, J.A., Ravin, C.E.: Scatter compensation in digital chest radiography using the posterior beam stop technique. Med. Phys. 21(3), 435–443 (1994)CrossRefGoogle Scholar
  33. 33.
    Mainegra-Hing, E., Kawrakow, I.: Fast Monte Carlo calculation of scatter corrections for CBCT images. J. Phys.: Conf. Ser. 102(1), 012017 (2008)Google Scholar
  34. 34.
    Mainegra-Hing, E., Kawrakow, I.: Variance reduction techniques for fast monte carlo CBCT scatter correction calculations. Phys. Med. Biol. 55(16), 4495–4507 (2010)CrossRefGoogle Scholar
  35. 35.
    Malden, C.H., Speller, R.D.: A CdZnTe array for the detection of explosives in baggage by energy-dispersive X-ray diffraction signatures at multiple scatter angles. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrometers, Detect. Assoc. Equip. 449(1), 408–415 (2000)CrossRefGoogle Scholar
  36. 36.
    Narasimhan, S.G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S.K., Jensen, H.W.: Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. 25(3), 1003–1012 (2006)CrossRefGoogle Scholar
  37. 37.
    Perkins, S.T., Cullen, D.E., Seltzer, S.M.: Tables and graphs of electron-interaction cross sections from 10 eV to 100 Gev derived from the LLNL evaluated electron data library (EEDL), Z = 1 to 100. Lawrence Livermore National Lab, UCRL-50400 31 (1991)Google Scholar
  38. 38.
    Prettyman, T.H., Gardner, R.P., Russ, J.C., Verghese, K.: A combined transmission and scattering tomographic approach to composition and density imaging. Appl. Radiat. Isot. 44(10–11), 1327–1341 (1993)CrossRefGoogle Scholar
  39. 39.
    Punnoose, J., Xu, J., Sisniega, A., Zbijewski, W., Siewerdsen, J.H.: Technical note: spektr 3.0-a computational tool for X-ray spectrum modeling and analysis. Med. Phys. 43(8), 4711–4717 (2016)CrossRefGoogle Scholar
  40. 40.
    Rana, R., Akhilesh, A.S., Jain, Y.S., Shankar, A., Bednarek, D.R., Rudin, S.: Scatter estimation and removal of anti-scatter grid-line artifacts from anthropomorphic head phantom images taken with a high resolution image detector. In: Proceedings of SPIE 9783 (2016)Google Scholar
  41. 41.
    Salvat, F., Fernández-Varea, J., Sempau, J.: Penelope 2008: a code system for Monte Carlo simulation of electron and photon transport. In: Nuclear energy agency OECD, Workshop proceedings (2008)Google Scholar
  42. 42.
    Satat, G., Heshmat, B., Raviv, D., Raskar, R.: All photons imaging through volumetric scattering. Sci. Rep. 6, 33946 (2016)CrossRefGoogle Scholar
  43. 43.
    Segars, W., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.M.W.: 4D XCAT phantom for multimodality imaging research. Med. Phys. 37, 4902–4915 (2010)CrossRefGoogle Scholar
  44. 44.
    Seibert, J.A., Boone, J.M.: X ray scatter removal by deconvolution. Med. Phys. 15(4), 567–575 (1988)CrossRefGoogle Scholar
  45. 45.
    Sheinin, M., Schechner, Y.Y.: The next best underwater view. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  46. 46.
    Siewerdsen, J.H., Jaffray, D.A.: Cone-beam computed tomography with a flat-panel imager: magnitude and effects of X-ray scatter. Med. Phys. 28(2), 220–231 (2001)CrossRefGoogle Scholar
  47. 47.
    Storm, L., Israel, H.I.: Photon cross sections from 1 keV to 100 MeV for elements Z = 1 to Z = 100. At.Ic Data Nucl. Data Tables 7(6), 565–681 (1970)CrossRefGoogle Scholar
  48. 48.
    Swirski, Y., Schechner, Y.Y., Herzberg, B., Negahdaripour, S.: Caustereo: range from light in nature. Appl. Opt. 50(28), F89–F101 (2011)CrossRefGoogle Scholar
  49. 49.
    Treibitz, T., Schechner, Y.Y.: Recovery limits in pointwise degradation. In: IEEE International Conference on Computational Photography (ICCP) (2009)Google Scholar
  50. 50.
    Turbell, H.: Cone-beam reconstruction using filtered backprojection. Thesis (doctoral) - Linköping Universitet. (2001)Google Scholar
  51. 51.
    Wadeson, N., Morton, E., Lionheart, W.: Scatter in an uncollimated X-ray CT machine based on a Geant4 Monte Carlo simulation. In: Proceedings of SPIE 7622 (2010)Google Scholar
  52. 52.
    Watson, P.G.F., Tomic, N., Seuntjens, J., Mainegra-Hing, E.: Implementation of an efficient Monte Carlo calculation for CBCT scatter correction: phantom study. J. Appl. Clin. Med. Phys. 16(4), 216–227 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Adam Geva
    • 1
  • Yoav Y. Schechner
    • 1
    Email author
  • Yonatan Chernyak
    • 1
  • Rajiv Gupta
    • 2
  1. 1.Viterbi Faculty of Electrical EngineeringTechnion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations