Advertisement

Focus, Segment and Erase: An Efficient Network for Multi-label Brain Tumor Segmentation

  • Xuan ChenEmail author
  • Jun Hao Liew
  • Wei Xiong
  • Chee-Kong Chui
  • Sim-Heng Ong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11217)

Abstract

In multi-label brain tumor segmentation, class imbalance and inter-class interference are common and challenging problems. In this paper, we propose a novel end-to-end trainable network named FSENet to address the aforementioned issues. The proposed FSENet has a tumor region pooling component to restrict the prediction within the tumor region (“focus”), thus mitigating the influence of the dominant non-tumor region. Furthermore, the network decomposes the more challenging multi-label brain tumor segmentation problem into several simpler binary segmentation tasks (“segment”), where each task focuses on a specific tumor tissue. To alleviate inter-class interference, we adopt a simple yet effective idea in our work: we erase the segmented regions before proceeding to further segmentation of tumor tissue (“erase”), thus reduces competition among different tumor classes. Our single-model FSENet ranks \(3^{rd}\) on the multi-modal brain tumor segmentation benchmark 2015 (BraTS 2015) without relying on ensembles or complicated post-processing steps.

Keywords

Brain tumor segmentation Convolutional neural network Class imbalance Inter-class interference 

Notes

Acknowledgment

We appreciate the support of NVIDIA Corporation with the donation of the Pascal Titan Xp GPU used in this study.

References

  1. 1.
    Bauer, S., Fejes, T., Slotboom, J., Wiest, R., Nolte, L.P., Reyes, M.: Segmentation of brain tumor images based on integrated hierarchical classification and regularization. In: 2012 International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) BraTS Workshop (2012)Google Scholar
  2. 2.
    Beers, A., et al.: Sequential 3D U-Nets for biologically-informed brain tumor segmentation. arXiv preprint arXiv:1709.02967 (2017)
  3. 3.
    Casamitjana, A., Catà, M., Sánchez, I., Combalia, M., Vilaplana, V.: Cascaded V-Net using ROI masks for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 381–391. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_33CrossRefGoogle Scholar
  4. 4.
    Chen, X., Nguyen, B.P., Chui, C.K., Ong, S.H.: Automated brain tumor segmentation using kernel dictionary learning and superpixel-level features. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2547–2552 (2016)Google Scholar
  5. 5.
    Christ, P.F., et al.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_48CrossRefGoogle Scholar
  6. 6.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_49CrossRefGoogle Scholar
  7. 7.
    Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: 3D variational brain tumor segmentation using a high dimensional feature set. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8. IEEE (2007)Google Scholar
  8. 8.
    Rodríguez Colmeiro, R.G., Verrastro, C.A., Grosges, T.: Multimodal brain tumor segmentation using 3D convolutional networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 226–240. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_20CrossRefGoogle Scholar
  9. 9.
    Feng, X., Meyer, C.: Patch-based 3D U-Net for brain tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2017)Google Scholar
  10. 10.
    Gadermayr, M., Dombrowski, A.K., Klinkhammer, B.M., Boor, P., Merhof, D.: CNN cascades for segmenting whole slide images of the kidney. arXiv preprint arXiv:1708.00251 (2017)
  11. 11.
    Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  12. 12.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV) (2017)Google Scholar
  13. 13.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)Google Scholar
  14. 14.
    Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  15. 15.
    Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013).  https://doi.org/10.2196/jmir.2930. http://www.jmir.org/2013/11/e245/CrossRefGoogle Scholar
  16. 16.
    Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109–117 (2011)Google Scholar
  17. 17.
    Menze, B.H., et al.: BraTS 2015 online evaluation platform. https://www.virtualskeleton.ch/BRATS/Start2015
  18. 18.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  19. 19.
    Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15745-5_19CrossRefGoogle Scholar
  20. 20.
    Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision, pp. 565–571. IEEE (2016)Google Scholar
  21. 21.
    Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)CrossRefGoogle Scholar
  22. 22.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)CrossRefGoogle Scholar
  23. 23.
    Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)CrossRefGoogle Scholar
  24. 24.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28. arxiv.org/abs/1505.04597CrossRefGoogle Scholar
  25. 25.
    Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. arXiv preprint arXiv:1709.00382 (2017)
  26. 26.
    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.Institute for Infocomm ResearchSingaporeSingapore

Personalised recommendations