Highly-Economized Multi-view Binary Compression for Scalable Image Clustering

  • Zheng Zhang
  • Li Liu
  • Jie Qin
  • Fan Zhu
  • Fumin Shen
  • Yong XuEmail author
  • Ling Shao
  • Heng Tao Shen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11216)


How to economically cluster large-scale multi-view images is a long-standing problem in computer vision. To tackle this challenge, we introduce a novel approach named Highly-economized Scalable Image Clustering (HSIC) that radically surpasses conventional image clustering methods via binary compression. We intuitively unify the binary representation learning and efficient binary cluster structure learning into a joint framework. In particular, common binary representations are learned by exploiting both sharable and individual information across multiple views to capture their underlying correlations. Meanwhile, cluster assignment with robust binary centroids is also performed via effective discrete optimization under \(\ell _{21}\)-norm constraint. By this means, heavy continuous-valued Euclidean distance computations can be successfully reduced by efficient binary XOR operations during the clustering procedure. To our best knowledge, HSIC is the first binary clustering work specifically designed for scalable multi-view image clustering. Extensive experimental results on four large-scale image datasets show that HSIC consistently outperforms the state-of-the-art approaches, whilst significantly reducing computational time and memory footprint.


Large-scale image clustering Binary code learning Binary clustering Multi-view features 


  1. 1.
    Avrithis, Y., Kalantidis, Y., Anagnostopoulos, E., Emiris, I.Z.: Web-scale image clustering revisited. In: ICCV (2015)Google Scholar
  2. 2.
    Baluja, S., Covell, M.: Learning to hash: forgiving hash functions and applications. Data Mining Knowl. Discov. 17(3), 402–430 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bickel, S., Scheffer, T.: Multi-view clustering. In: ICDM (2004)Google Scholar
  4. 4.
    Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: IJCAI (2013)Google Scholar
  5. 5.
    Chen, J., Wang, Y., Qin, J., Liu, L., Shao, L.: Fast person re-identification via cross-camera semantic binary transformation. In: CVPR (2017)Google Scholar
  6. 6.
    Chen, W.Y., Song, Y., Bai, H., Lin, C.J., Chang, E.Y.: Parallel spectral clustering in distributed systems. IEEE TPAMI 33(3), 568–586 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, X., Cai, D.: Large scale spectral clustering with landmark-based representation. In: AAAI (2011)Google Scholar
  8. 8.
    Chitta, R., Jin, R., Havens, T.C., Jain, A.K.: Approximate kernel k-means: solution to large scale kernel clustering. In: SIGKDD (2011)Google Scholar
  9. 9.
    Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from national university of Singapore. In: ACM International Conference on Image and Video Retrieval (2009)Google Scholar
  10. 10.
    De Sa, V.R., Gallagher, P.W., Lewis, J.M., Malave, V.L.: Multi-view kernel construction. Mach. Learn. 79(1–2), 47–71 (2010)MathSciNetGoogle Scholar
  11. 11.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)Google Scholar
  12. 12.
    Ding, C., Zhou, D., He, X., Zha, H.: R1-PCA: rotational invariant \(\ell \)1-norm principal component analysis for robust subspace factorization. In: ICML (2006)Google Scholar
  13. 13.
    Gao, H., Nie, F., Li, X., Huang, H.: Multi-view subspace clustering. In: ICCV (2015)Google Scholar
  14. 14.
    Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE TPAMI 35(12), 2916–2929 (2013)CrossRefGoogle Scholar
  15. 15.
    Gong, Y., Pawlowski, M., Yang, F., Brandy, L., Bourdev, L., Fergus, R.: Web scale photo hash clustering on a single machine. In: CVPR (2015)Google Scholar
  16. 16.
    Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C 28(1), 100–108 (1979)zbMATHGoogle Scholar
  17. 17.
    Jain, A.K.: Data clustering: 50 years beyond k-means. PRL 31(8), 651–666 (2010)CrossRefGoogle Scholar
  18. 18.
    Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report (2009)Google Scholar
  19. 19.
    Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In: NIPS (2011)Google Scholar
  20. 20.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS (2001)Google Scholar
  21. 21.
    Li, Y., Nie, F., Huang, H., Huang, J.: Large-scale multi-view spectral clustering via bipartite graph. In: AAAI (2015)Google Scholar
  22. 22.
    Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: ICDM (2013)Google Scholar
  23. 23.
    Liu, L., Shao, L.: Sequential compact code learning for unsupervised image hashing. IEEE TNNLS 27(12), 2526–2536 (2016)Google Scholar
  24. 24.
    Liu, L., Yu, M., Shao, L.: Latent structure preserving hashing. IJCV 122(3), 439–457 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu, W., Mu, C., Kumar, S., Chang, S.F.: Discrete graph hashing. In: NIPS (2014)Google Scholar
  26. 26.
    Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: ICML (2011)Google Scholar
  27. 27.
    Lu, J., Liong, V.E., Zhou, J.: Simultaneous local binary feature learning and encoding for homogeneous and heterogeneous face recognition. IEEE TPAMI 40(8), 1979–1993 (2017)CrossRefGoogle Scholar
  28. 28.
    Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  29. 29.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: NIPS (2002)Google Scholar
  30. 30.
    Nie, F., Cai, G., Li, X.: Multi-view clustering and semi-supervised classification with adaptive neighbours. In: AAAI (2017)Google Scholar
  31. 31.
    Nie, F., Li, J., Li, X., et al.: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification. In: IJCAI (2016)Google Scholar
  32. 32.
    Otto, C., Wang, D., Jain, A.K.: Clustering millions of faces by identity. IEEE TPAMI 40(2), 289–303 (2018)CrossRefGoogle Scholar
  33. 33.
    Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)CrossRefGoogle Scholar
  34. 34.
    Qin, J., et al.: Binary coding for partial action analysis with limited observation ratios. In: CVPR (2017)Google Scholar
  35. 35.
    Qin, J., et al.: Zero-shot action recognition with error-correcting output codes. In: CVPR (2017)Google Scholar
  36. 36.
    Sculley, D.: Web-scale k-means clustering. In: WWW (2010)Google Scholar
  37. 37.
    Shao, W., He, L., Lu, C.T., Philip, S.Y.: Online multi-view clustering with incomplete views. In: ICBD (2016)Google Scholar
  38. 38.
    Shen, F., Zhou, X., Yang, Y., Song, J., Shen, H.T., Tao, D.: A fast optimization method for general binary code learning. IEEE TIP 25(12), 5610–5621 (2016)MathSciNetGoogle Scholar
  39. 39.
    Shen, F., et al.: Classification by retrieval: binarizing data and classifier. In: ACM SIGIR (2017)Google Scholar
  40. 40.
    Shen, F., Shen, C., Liu, W., Tao Shen, H.: Supervised discrete hashing. In: CVPR (2015)Google Scholar
  41. 41.
    Shen, X.B., Liu, W., Tsang, I.W., Shen, F., Sun, Q.S.: Compressed k-means for large-scale clustering. In: AAAI (2017)Google Scholar
  42. 42.
    Tzortzis, G., Likas, A.: Kernel-based weighted multi-view clustering. In: ICDM (2012)Google Scholar
  43. 43.
    Wang, J., Zhang, T., Sebe, N., Shen, H.T., et al.: A survey on learning to hash. IEEE TPAMI 40(4), 769–790 (2017)CrossRefGoogle Scholar
  44. 44.
    Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image retrieval. In: CVPR (2010)Google Scholar
  45. 45.
    Wang, X., Guo, X., Lei, Z., Zhang, C., Li, S.Z.: Exclusivity-consistency regularized multi-view subspace clustering. In: CVPR (2017)Google Scholar
  46. 46.
    Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: CVPR (2011)Google Scholar
  47. 47.
    Xia, T., Tao, D., Mei, T., Zhang, Y.: Multiview spectral embedding. IEEE TCYB 40(6), 1438–1446 (2010)Google Scholar
  48. 48.
    Xu, C., Tao, D., Xu, C.: A survey on multi-view learning. arXiv preprint (2013)Google Scholar
  49. 49.
    Zhang, C., Hu, Q., Fu, H., Zhu, P., Cao, X.: Latent multi-view subspace clustering. In: CVPR (2017)Google Scholar
  50. 50.
    Zhang, Z., Liu, L., Shen, F., Shen, H.T., Shao, L.: Binary multi-view clustering. IEEE TPAMI (2018).
  51. 51.
    Zhang, Z., Shao, L., Xu, Y., Liu, L., Yang, J.: Marginal representation learning with graph structure self-adaptation. IEEE TNNLS 29(10), 4645–4659 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zheng Zhang
    • 1
    • 2
    • 3
  • Li Liu
    • 3
  • Jie Qin
    • 4
  • Fan Zhu
    • 3
  • Fumin Shen
    • 5
  • Yong Xu
    • 1
    Email author
  • Ling Shao
    • 3
  • Heng Tao Shen
    • 5
  1. 1.Harbin Institute of Technology (Shenzhen)ShenzhenChina
  2. 2.The University of QueenslandBrisbaneAustralia
  3. 3.Inception Institute of Artificial IntelligenceAbu DhabiUAE
  4. 4.Computer Vision LaboratoryETH ZurichZürichSwitzerland
  5. 5.University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations