Advertisement

Robust Fitting in Computer Vision: Easy or Hard?

  • Tat-Jun Chin
  • Zhipeng Cai
  • Frank Neumann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11216)

Abstract

Robust model fitting plays a vital role in computer vision, and research into algorithms for robust fitting continues to be active. Arguably the most popular paradigm for robust fitting in computer vision is consensus maximisation, which strives to find the model parameters that maximise the number of inliers. Despite the significant developments in algorithms for consensus maximisation, there has been a lack of fundamental analysis of the problem in the computer vision literature. In particular, whether consensus maximisation is “tractable” remains a question that has not been rigorously dealt with, thus making it difficult to assess and compare the performance of proposed algorithms, relative to what is theoretically achievable. To shed light on these issues, we present several computational hardness results for consensus maximisation. Our results underline the fundamental intractability of the problem, and resolve several ambiguities existing in the literature.

Keywords

Robust fitting Consensus maximisation Inlier set maximisation Computational hardness 

Notes

Acknowledgements

This work was supported by ARC Grant DP160103490.

References

  1. 1.
    Meer, P.: Robust techniques for computer vision. In: Medioni, G., Kang, S.B. (eds.) Emerging Topics in Computer Vision. Prentice Hall, Upper Saddle River (2004)Google Scholar
  2. 2.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: British Machine Vision Conference (BMVC) (2009)Google Scholar
  4. 4.
    Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2038 (2013)CrossRefGoogle Scholar
  5. 5.
    Tran, Q.H., Chin, T.J., Chojnacki, W., Suter, D.: Sampling minimal subsets with large spans for robust estimation. Int. J. Comput. Vis. (IJCV) 106(1), 93–112 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, H.: Consensus set maximization with guaranteed global optimality for robust geometry estimation. In: IEEE International Conference on Computer Vision (ICCV) (2009)Google Scholar
  7. 7.
    Zheng, Y., Sugimoto, S., Okutomi, M.: Deterministically maximizing feasible subsystems for robust model fitting with unit norm constraints. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  8. 8.
    Enqvist, O., Ask, E., Kahl, F., Åström, K.: Robust fitting for multiple view geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 738–751. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33718-5_53CrossRefGoogle Scholar
  9. 9.
    Bazin, J.C., Li, H., Kweon, I.S., Demonceaux, C., Vasseur, P., Ikeuchi, K.: A branch-and-bound approach to correspondence and grouping problems. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1565–1576 (2013)CrossRefGoogle Scholar
  10. 10.
    Yang, J., Li, H., Jia, Y.: Optimal essential matrix estimation via inlier-set maximization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 111–126. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10590-1_8CrossRefGoogle Scholar
  11. 11.
    Parra Bustos, A., Chin, T.J., Suter, D.: Fast rotation search with stereographic projections for 3D registration. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  12. 12.
    Enqvist, O., Ask, E., Kahl, F., Åström, K.: Tractable algorithms for robust model estimation. Int. J. Comput. Vis. 112(1), 115–129 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chin, T.J., Purkait, P., Eriksson, A., Suter, D.: Efficient globally optimal consensus maximisation with tree search. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  14. 14.
    Campbell, D., Petersson, L., Kneip, L., Li, H.: Globally-optimal inlier set maximisation for simultaneous camera pose and feature correspondence. In: IEEE International Conference on Computer Vision (ICCV) (2017)Google Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W H Freeman & Co, New York (1990)Google Scholar
  16. 16.
    Downey, R.G., Fellows, M.R.: Parametrized Complexity. Springer, New York (1999).  https://doi.org/10.1007/978-1-4612-0515-9CrossRefzbMATHGoogle Scholar
  17. 17.
    Erickson, J., Har-Peled, S., Mount, D.M.: On the least median square problem. Discret. Comput. Geom. 36(4), 593–607 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001).  https://doi.org/10.1007/978-3-662-04565-7CrossRefzbMATHGoogle Scholar
  19. 19.
    Le, H., Chin, T.J., Suter, D.: An exact penalty method for locally convergent maximum consensus. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  20. 20.
    Purkait, P., Zach, C., Eriksson, A.: Maximum consensus parameter estimation by reweighted \(\ell _1\) methods. In: Pelillo, M., Hancock, E. (eds.) EMMCVPR 2017. LNCS, vol. 10746, pp. 312–327. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78199-0_21CrossRefGoogle Scholar
  21. 21.
    Cai, Z., Chin, T.J., Le, H., Suter, D.: Deterministic consensus maximization with biconvex programming. In: Ferrari, V. (ed.) ECCV 2018, Part XII. LNCS, vol. 11216, pp. 699–714. Springer, Cham (2018)Google Scholar
  22. 22.
    Svärm, L., Enqvist, O., Oskarsson, M., Kahl, F.: Accurate localization and pose estimation for large 3D models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  23. 23.
    Parra Bustos, A., Chin, T.J.: Guaranteed outlier removal for rotation search. In: IEEE International Conference on Computer Vision (ICCV) (2015)Google Scholar
  24. 24.
    Chin, T.J., Kee, Y.H., Eriksson, A., Neumann, F.: Guaranteed outlier removal with mixed integer linear programs. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  25. 25.
    Johnson, D.S., Preparata, F.P.: The densest hemisphere problem. Theor. Comput. Sci. 6, 93–107 (1978)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ben-David, S., Eiron, N., Simon, H.: The computational complexity of densest region detection. J. Comput. Syst. Sci. 64(1), 22–47 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38(3), 899–921 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Bernholt, T.: Robust estimators are hard to compute. Technical report 52, Technische Universität Dortmund (2005)Google Scholar
  29. 29.
    Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966)zbMATHGoogle Scholar
  30. 30.
    Giannopoulos, P., Knauer, C., Rote, G.: The parameterized complexity of some geometric problems in unbounded dimension. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 198–209. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-11269-0_16CrossRefzbMATHGoogle Scholar
  31. 31.
  32. 32.
    Matoušek, J.: On geometric optimization with few violated constraints. Discret. Comput. Geom. 14(4), 365–384 (1995)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Chin, T.J., Purkait, P., Eriksson, A., Suter, D.: Efficient globally optimal consensus maximisation with tree search. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 39(4), 758–772 (2017)CrossRefGoogle Scholar
  34. 34.
    Amaldi, E., Kann, V.: The complexity and approximability of finding maximum feasible subsystems of linear relations. Theor. Comput. Sci. 147, 181–210 (1995)MathSciNetCrossRefGoogle Scholar
  35. 35.
  36. 36.
  37. 37.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Computer ScienceThe University of AdelaideAdelaideAustralia

Personalised recommendations