Perturbation Robust Representations of Topological Persistence Diagrams

  • Anirudh SomEmail author
  • Kowshik Thopalli
  • Karthikeyan Natesan Ramamurthy
  • Vinay Venkataraman
  • Ankita Shukla
  • Pavan Turaga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11211)


Topological methods for data analysis present opportunities for enforcing certain invariances of broad interest in computer vision, including view-point in activity analysis, articulation in shape analysis, and measurement invariance in non-linear dynamical modeling. The increasing success of these methods is attributed to the complementary information that topology provides, as well as availability of tools for computing topological summaries such as persistence diagrams. However, persistence diagrams are multi-sets of points and hence it is not straightforward to fuse them with features used for contemporary machine learning tools like deep-nets. In this paper we present theoretically well-grounded approaches to develop novel perturbation robust topological representations, with the long-term view of making them amenable to fusion with contemporary learning architectures. We term the proposed representation as Perturbed Topological Signatures, which live on a Grassmann manifold and hence can be efficiently used in machine learning pipelines. We explore the use of the proposed descriptor on three applications: 3D shape analysis, view-invariant activity analysis, and non-linear dynamical modeling. We show favorable results in both high-level recognition performance and time-complexity when compared to other baseline methods.


Invariance learning Topological data analysis Persistence diagrams Grassmann manifold Perturbed topological signature 



This work was supported in part by ARO grant number W911NF-17-1-0293 and NSF CAREER award 1452163.

Supplementary material

474212_1_En_38_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (pdf 1126 KB)


  1. 1.
    Absil, P.A., Mahony, R., Sepulchre, R.: Riemannian geometry of grassmann manifolds with a view on algorithmic computation. Acta Applicandae Mathematica 80(2), 199–220 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  3. 3.
    Adams, H., et al.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)MathSciNetGoogle Scholar
  4. 4.
    Ali, S., Basharat, A., Shah, M.: Chaotic invariants for human action recognition. In: IEEE 11th International Conference on Computer Vision (ICCV), pp. 1–8 (2007)Google Scholar
  5. 5.
    Anirudh, R., Venkataraman, V., Natesan Ramamurthy, K., Turaga, P.: A Riemannian framework for statistical analysis of topological persistence diagrams. In: The IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 68–76 (2016)Google Scholar
  6. 6.
    Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633 (2011)Google Scholar
  7. 7.
    Bagherinia, H., Manduchi, R.: A theory of color barcodes. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 806–813 (2011)Google Scholar
  8. 8.
    Basri, R., Hassner, T., Zelnik-Manor, L.: Approximate nearest subspace search. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 266–278 (2011)CrossRefGoogle Scholar
  9. 9.
    Begelfor, E., Werman, M.: Affine invariance revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2087–2094. IEEE (2006)Google Scholar
  10. 10.
    Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198–218 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bertsekas, D.P.: A new algorithm for the assignment problem. Math. Program. 21(1), 152–171 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chikuse, Y.: Statistics on Special Manifolds, vol. 174. Springer Science & Business, New York (2012)zbMATHGoogle Scholar
  14. 14.
    Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.J., Krim, H.: An entropy-based persistence barcode. Pattern Recogn. 48(2), 391–401 (2015)CrossRefGoogle Scholar
  15. 15.
    Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 386–397. Springer, Heidelberg (2009). Scholar
  16. 16.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press (2001)Google Scholar
  19. 19.
    Dabaghian, Y., Mémoli, F., Frank, L., Carlsson, G.: A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Computa. Biol. 8(8), 1–14 (2012)CrossRefGoogle Scholar
  20. 20.
    De Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co) homology. Inverse Probl. 27(12), 124003 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dey, T.K., Mandal, S., Varcho, W.: Improved image classification using topological persistence. In: Hullin, M., Klein, R., Schultz, T., Yao, A. (eds.) Vision, Modeling & Visualization. The Eurographics Association (2017).
  22. 22.
    Draper, B., Kirby, M., Marks, J., Marrinan, T., Peterson, C.: A flag representation for finite collections of subspaces of mixed dimensions. Linear Algebr. Appl. 451, 15–32 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)Google Scholar
  25. 25.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Emrani, S., Gentimis, T., Krim, H.: Persistent homology of delay embeddings and its application to wheeze detection. IEEE Signal Process. Lett. 21(4), 459–463 (2014). Scholar
  27. 27.
    Emrani, S., Saponas, T.S., Morris, D., Krim, H.: A novel framework for pulse pressure wave analysis using persistent homology. IEEE Signal Process. Lett. 22(11), 1879–1883 (2015). Scholar
  28. 28.
    Gopalan, R., Taheri, S., Turaga, P., Chellappa, R.: A blur-robust descriptor with applications to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1220–1226 (2012)CrossRefGoogle Scholar
  29. 29.
    Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 376–383. ACM (2008)Google Scholar
  30. 30.
    Harandi, M.T., Salzmann, M., Jayasumana, S., Hartley, R., Li, H.: Expanding the family of Grassmannian kernels: an embedding perspective. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 408–423. Springer, Cham (2014). Scholar
  31. 31.
    Heath, K., Gelfand, N., Ovsjanikov, M., Aanjaneya, M., Guibas, L.J.: Image webs: computing and exploiting connectivity in image collections. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  32. 32.
    Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. arXiv preprint arXiv:1707.04041 (2017)
  33. 33.
    Ji-guang, S.: Perturbation of angles between linear subspaces. J. Comput. Math., 58–61 (1987)Google Scholar
  34. 34.
    Junejo, I.N., Dexter, E., Laptev, I., Perez, P.: View-independent action recognition from temporal self-similarities. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 172–185 (2011)CrossRefGoogle Scholar
  35. 35.
    Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams. J. Exp. Algorithmics (JEA) 22(1), 1–4 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kokkinos, I., Bronstein, M., Yuille, A.: Dense scale invariant descriptors for images and surfaces. Ph.D. thesis, INRIA (2012)Google Scholar
  37. 37.
    Krim, H., Gentimis, T., Chintakunta, H.: Discovering the whole by the coarse: a topological paradigm for data analysis. IEEE Signal Process. Mag. 33(2), 95–104 (2016). Scholar
  38. 38.
    Kusano, G., Hiraoka, Y., Fukumizu, K.: Persistence weighted Gaussian kernel for topological data analysis. In: International Conference on Machine Learning (ICML), pp. 2004–2013 (2016)Google Scholar
  39. 39.
    Li, C., Shi, Z., Liu, Y., Xu, B.: Grassmann manifold based shape matching and retrieval under partial occlusions. In: International Symposium on Optoelectronic Technology and Application: Image Processing and Pattern Recognition (2014)Google Scholar
  40. 40.
    Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1995–2002 (2014)Google Scholar
  41. 41.
    Lian, Z., et al.: Shrec’10 track: non-rigid 3D shape retrieval. In: Eurographics Workshop on 3D Object Retrieval (3DOR), vol. 10, pp. 101–108 (2010)Google Scholar
  42. 42.
    Liu, X., Srivastava, A., Gallivan, K.: Optimal linear representations of images for object recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2003)Google Scholar
  43. 43.
    Luo, D., Huang, H.: Video motion segmentation using new adaptive manifold denoising model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  44. 44.
    Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on Riemannian manifolds. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 37–45 (2015)Google Scholar
  45. 45.
    Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persistence diagrams. Inverse Probl. 27(12), 124007 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  47. 47.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. (TOG) 21(4), 807–832 (2002)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Pachauri, D., Hinrichs, C., Chung, M.K., Johnson, S.C., Singh, V.: Topology-based kernels with application to inference problems in Alzheimer’s disease. IEEE Trans. Med. Imaging 30(10), 1760–1770 (2011)CrossRefGoogle Scholar
  49. 49.
    Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15(3), 799–838 (2015)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Rahmani, H., Mian, A., Shah, M.: Learning a deep model for human action recognition from novel viewpoints. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 667–681 (2017)CrossRefGoogle Scholar
  51. 51.
    Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  52. 52.
    Rouse, D., et al.: Feature-aided multiple hypothesis tracking using topological and statistical behavior classifiers. In: SPIE Defense+Security (2015)Google Scholar
  53. 53.
    Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)CrossRefGoogle Scholar
  54. 54.
    Seversky, L.M., Davis, S., Berger, M.: On time-series topological data analysis: new data and opportunities. In: DiffCVML 2016, held in Conjunction with IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2016, Las Vegas, NV, USA, 26 June–1 July 2016, pp. 1014–1022 (2016)Google Scholar
  55. 55.
    Sharafuddin, E., Jiang, N., Jin, Y., Zhang, Z.L.: Know your enemy, know yourself: block-level network behavior profiling and tracking. In: IEEE Global Telecommunications Conference (GLOBECOM 2010), pp. 1–6 (2010)Google Scholar
  56. 56.
    da Silva, N.P., Costeira, J.P.: The normalized subspace inclusion: robust clustering of motion subspaces. In: IEEE International Conference on Computer Vision (ICCV), pp. 1444–1450. IEEE (2009)Google Scholar
  57. 57.
    Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., Ringach, D.L.: Topological analysis of population activity in visual cortex. J. Vis. 8(8), 11 (2008)CrossRefGoogle Scholar
  58. 58.
    Som, A., Krishnamurthi, N., Venkataraman, V., Ramamurthy, K.N., Turaga, P.: Multiscale evolution of attractor-shape descriptors for assessing Parkinson’s disease severity. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2017)Google Scholar
  59. 59.
    Som, A., Krishnamurthi, N., Venkataraman, V., Turaga, P.: Attractor-shape descriptors for balance impairment assessment in Parkinson’s disease. In: IEEE Conference on Engineering in Medicine and Biology Society (EMBC), pp. 3096–3100 (2016)Google Scholar
  60. 60.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley Online Library (2009)Google Scholar
  61. 61.
    Sun, X., Wang, L., Feng, J.: Further results on the subspace distance. Pattern Recogn. 40(1), 328–329 (2007)CrossRefGoogle Scholar
  62. 62.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). Scholar
  63. 63.
    Tralie, C.J., Perea, J.A.: (quasi) periodicity quantification in video data, using topology. SIAM J. Imaging Sci. 11(2), 1049–1077 (2018)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Turaga, P., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2286 (2011)CrossRefGoogle Scholar
  65. 65.
    Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discret. Comput. Geom. 52(1), 44–70 (2014)CrossRefGoogle Scholar
  66. 66.
    Venkataraman, V., Ramamurthy, K.N., Turaga, P.: Persistent homology of attractors for action recognition. In: IEEE International Conference on Image Processing (ICIP), pp. 4150–4154. IEEE (2016)Google Scholar
  67. 67.
    Wang, L., Wang, X., Feng, J.: Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition. Pattern Recogn. 39(3), 456–464 (2006)CrossRefGoogle Scholar
  68. 68.
    Weinland, D., Boyer, E., Ronfard, R.: Action recognition from arbitrary views using 3D exemplars. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–7. IEEE (2007)Google Scholar
  69. 69.
    Wong, Y.C.: Differential geometry of grassmann manifolds. Proc. Natl. Acad. Sci. 57(3), 589–594 (1967)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Yan, J., Pollefeys, M.: A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 94–106. Springer, Heidelberg (2006). Scholar
  71. 71.
    Ye, K., Lim, L.H.: Schubert varieties and distances between subspaces of different dimensions. SIAM J. Matrix Anal. Appl. 37(3), 1176–1197 (2016)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Yi, L., Su, H., Guo, X., Guibas, L.: SyncSpecCNN: synchronized spectral CNN for 3D shape segmentation. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  73. 73.
    Zomorodian, A.: Fast construction of the vietoris-rips complex. Comput. Graph. 34(3), 263–271 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Geometric Media LabArizona State UniversityTempeUSA
  2. 2.IBM Thomas J. Watson Research CenterYorktown HeightsUSA
  3. 3.Indraprastha Institute of Information Technology-DelhiDelhiIndia

Personalised recommendations