BusterNet: Detecting Copy-Move Image Forgery with Source/Target Localization

  • Yue WuEmail author
  • Wael Abd-Almageed
  • Prem Natarajan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11210)


We introduce a novel deep neural architecture for image copy-move forgery detection (CMFD), code-named BusterNet. Unlike previous efforts, BusterNet is a pure, end-to-end trainable, deep neural network solution. It features a two-branch architecture followed by a fusion module. The two branches localize potential manipulation regions via visual artifacts and copy-move regions via visual similarities, respectively. To the best of our knowledge, this is the first CMFD algorithm with discernibility to localize source/target regions. We also propose simple schemes for synthesizing large-scale CMFD samples using out-of-domain datasets, and stage-wise strategies for effective BusterNet training. Our extensive studies demonstrate that BusterNet outperforms state-of-the-art copy-move detection algorithms by a large margin on the two publicly available datasets, CASIA and CoMoFoD, and that it is robust against various known attacks.


Copy-move Image forgery detection Deep learning 


  1. 1.
    Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)CrossRefGoogle Scholar
  2. 2.
    Ardizzone, E., Bruno, A., Mazzola, G.: Copy-move forgery detection by matching triangles of keypoints. IEEE Trans. Inf. Forensics Secur. 10(10), 2084–2094 (2015)CrossRefGoogle Scholar
  3. 3.
    Asghar, K., Habib, Z., Hussain, M.: Copy-move and splicing image forgery detection and localization techniques: a review. Aust. J. Forensic Sci. 49(3), 281–307 (2017)CrossRefGoogle Scholar
  4. 4.
    Bayram, S., Sencar, H.T., Memon, N.: An efficient and robust method for detecting copy-move forgery. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pp. 1053–1056. IEEE (2009)Google Scholar
  5. 5.
    Birajdar, G.K., Mankar, V.H.: Digital image forgery detection using passive techniques: a survey. Digit. Investig. 10(3), 226–245 (2013)CrossRefGoogle Scholar
  6. 6.
    Bunk, J., et al.: Detection and localization of image forgeries using resampling features and deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1881–1889. IEEE (2017)Google Scholar
  7. 7.
    Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)CrossRefGoogle Scholar
  8. 8.
    Costanzo, A., Amerini, I., Caldelli, R., Barni, M.: Forensic analysis of SIFT keypoint removal and injection. IEEE Trans. Inf. Forensics Secur. 9(9), 1450–1464 (2014)CrossRefGoogle Scholar
  9. 9.
    Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)CrossRefGoogle Scholar
  10. 10.
    Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: surprisingly easy synthesis for instance detection. In: The IEEE International Conference on Computer Vision (ICCV), October 2017Google Scholar
  11. 11.
    Farid, H.: Seeing is not believing. IEEE Spectr. 46(8) (2009)CrossRefGoogle Scholar
  12. 12.
    Fridrich, A.J., Soukal, B.D., Lukáš, A.J.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop. Citeseer (2003)Google Scholar
  13. 13.
    Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in natural images. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)Google Scholar
  14. 14.
    Huang, D.Y., Huang, C.N., Hu, W.C., Chou, C.H.: Robustness of copy-move forgery detection under high JPEG compression artifacts. Multimed. Tools Appl. 76(1), 1509–1530 (2017)CrossRefGoogle Scholar
  15. 15.
    Ke, Y., Sukthankar, R., Huston, L.: An efficient parts-based near-duplicate and sub-image retrieval system. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 869–876. ACM (2004)Google Scholar
  16. 16.
    Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015)CrossRefGoogle Scholar
  17. 17.
    Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). Scholar
  18. 18.
    Liu, Y., Guan, Q., Zhao, X.: Copy-move forgery detection based on convolutional kernel network. Multimed. Tools Appl. 1–25 (2017)Google Scholar
  19. 19.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  20. 20.
    Mahdian, B., Saic, S.: Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci. Int. 171(2), 180–189 (2007)CrossRefGoogle Scholar
  21. 21.
    Mahmood, T., Nawaz, T., Irtaza, A., Ashraf, R., Shah, M., Mahmood, M.T.: Copy-move forgery detection technique for forensic analysis in digital images. Math. Probl. Eng. 2016, 1–13 (2016)CrossRefGoogle Scholar
  22. 22.
    Manu, V.T., Mehtre, B.M.: Detection of copy-move forgery in images using segmentation and SURF. In: Thampi, S., Bandyopadhyay, S., Krishnan, S., Li, K.C., Mosin, S., Ma, M. (eds.) Advances in Signal Processing and Intelligent Recognition Systems. AISC, vol. 425, pp. 645–654. Springer, Cham (2016). Scholar
  23. 23.
    Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)Google Scholar
  24. 24.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. (TOG) 22, 313–318 (2003)CrossRefGoogle Scholar
  25. 25.
    Pun, C.M., Yuan, X.C., Bi, X.L.: Image forgery detection using adaptive oversegmentation and feature point matching. IEEE Trans. Inf. Forensics Secur. 10(8), 1705–1716 (2015)CrossRefGoogle Scholar
  26. 26.
    Ryu, S.-J., Lee, M.-J., Lee, H.-K.: Detection of copy-rotate-move forgery using Zernike moments. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 51–65. Springer, Heidelberg (2010). Scholar
  27. 27.
    Shivakumar, B., Baboo, S.: Detection of region duplication forgery in digital images using SURF. Int. J. Comput. Sci. Issues 8(4), 199–205 (2011)Google Scholar
  28. 28.
    Silva, E., Carvalho, T., Ferreira, A., Rocha, A.: Going deeper into copy-move forgery detection: exploring image telltales via multi-scale analysis and voting processes. J. Vis. Commun. Image Represent. 29, 16–32 (2015)CrossRefGoogle Scholar
  29. 29.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)Google Scholar
  30. 30.
    Soni, B., Das, P., Thounaojam, D.: CMFD: a detailed review of block based and key feature based techniques in image copy-move forgery detection. IET Image Process. 12, 167–178 (2017)CrossRefGoogle Scholar
  31. 31.
    Tralic, D., Zupancic, I., Grgic, S., Grgic, M.: CoMoFod—new database for copy-move forgery detection. In: 2013 55th International Symposium on ELMAR, pp. 49–54. IEEE (2013)Google Scholar
  32. 32.
    Warif, N.B.A., et al.: Copy-move forgery detection: survey, challenges and future directions. J. Netw. Comput. Appl. 75, 259–278 (2016)CrossRefGoogle Scholar
  33. 33.
    Wojna, Z., et al.: The devil is in the decoder (2017)Google Scholar
  34. 34.
    Wu, Y., Abd-Almageed, W., Natarajan, P.: Deep matching and validation network: an end-to-end solution to constrained image splicing localization and detection. In: Proceedings of the 2017 ACM on Multimedia Conference, MM 2017, pp. 1480–1502 (2017)Google Scholar
  35. 35.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492. IEEE (2010)Google Scholar
  36. 36.
    Yang, B., Sun, X., Guo, H., Xia, Z., Chen, X.: A copy-move forgery detection method based on CMFD-SIFT. Multimed. Tools Appl. 77, 1–19 (2017)Google Scholar
  37. 37.
    Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Detecting image splicing in the wild (web). In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2015)Google Scholar
  38. 38.
    Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Large-scale evaluation of splicing localization algorithms for web images. Multimed. Tools Appl. 76(4), 4801–4834 (2017)CrossRefGoogle Scholar
  39. 39.
    Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1831–1839. IEEE (2017)Google Scholar
  40. 40.
    Zhu, Y., Shen, X., Chen, H.: Copy-move forgery detection based on scaled ORB. Multimed. Tools Appl. 75(6), 3221–3233 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.USC Information Sciences InstituteMarina del ReyUSA
  2. 2.Amazon AlexaCambridgeUSA

Personalised recommendations