Capacitated Lot Sizing Problem with Production Carryover and Setup Crossover Across Periods (CLSP:PCSC): Mathematical Model 1 (MM1) and a Heuristic for Process Industries

  • Ravi Ramya
  • Chandrasekharan Rajendran
  • Hans Ziegler
  • Sanjay Mohapatra
  • K. Ganesh


The capacitated lot sizing problem (CLSP) is a lot sizing model in which the production of multiple products is allowed within a time period on a single machine, with a condition that the entire demand for a product within that period should be met from the production in that period and/or the inventory carried from the previous periods, without any backorders or lost sales. Finding a minimum cost production plan that satisfies all the demand requirements without exceeding the capacity limits of a period is the main objective of the CLSP.


  1. Akartunalı, K., and A. J. Miller. 2009. A heuristic approach for big bucket multi-level production planning problems. European Journal of Operational Research 193(2): 396–411.CrossRefGoogle Scholar
  2. Belo-Filho, M. A., F. M. Toledo, and B. Almada-Lobo. 2013. Models for capacitated lot-sizing problem with backlogging, setup carryover and crossover. Journal of the Operational Research Society 65(11): 1735–1747.CrossRefGoogle Scholar
  3. Belvaux, G. and L. A. Wolsey. 2000. Bc—prod: a specialized branch-and-cut system for lot-sizing problems. Management Science 46(5): 724–738.CrossRefGoogle Scholar
  4. Bitran, G. R. and H. H. Yanasse. 1982. Computational complexity of the capacitated lot size problem. Management Science 28(10): 1174–1186.CrossRefGoogle Scholar
  5. Caserta, M., A. Ramirez, and S. Voß. 2010. A math-heuristic for the multi-level capacitated lot sizing problem with carryover. Applications of evolutionary computation, 462–471. Springer.Google Scholar
  6. Caserta, M., A. Ramirez, S. Voß, and R. Moreno. 2009. A hybrid algorithm for the multi level capacitated lot sizing problem with setup carry-over. Logistik management, 123–138. Springer.Google Scholar
  7. Caserta, M. and S. Voß. 2013. A mip-based framework and its application on a lot sizing problem with setup carryover. Journal of Heuristics 19(2): 295–316.CrossRefGoogle Scholar
  8. Gopalakrishnan, M. 2000. A modified framework for modelling set-up carryover in the capacitated lotsizing problem. International Journal of Production Research 38(14): 3421–3424.CrossRefGoogle Scholar
  9. Gopalakrishnan, M., K. Ding, J.-M. Bourjolly, and S. Mohan. 2001. A tabu-search heuristic for the capacitated lot-sizing problem with set-up carryover. Management Science 47(6): 851–863.CrossRefGoogle Scholar
  10. Gopalakrishnan, M., D. Miller, and C. Schmidt. 1995. A framework for modelling setup carryover in the capacitated lot sizing problem. International Journal of Production Research 33(7): 1973–1988.CrossRefGoogle Scholar
  11. Goren, H. G., S. Tunali, and R. Jans. 2012. A hybrid approach for the capacitated lot sizing problem with setup carryover. International Journal of Production Research 50(6): 1582–1597.CrossRefGoogle Scholar
  12. Haase, K. and A. Drexl. 1994. Capacitated lot-sizing with linked production quantities of adjacent periods. Operations Research’93, 212–215. Springer.Google Scholar
  13. Karimi, B., S. Ghomi, and J. Wilson. 2006. A tabu search heuristic for solving the clsp with backlogging and set-up carry-over. Journal of the Operational Research Society 57(2): 140–147.CrossRefGoogle Scholar
  14. Mohan, S., M. Gopalakrishnan, R. Marathe, and A. Rajan. 2012. A note on modelling the capacitated lot-sizing problem with set-up carryover and set-up splitting. International Journal of Production Research 50(19): 5538–5543.CrossRefGoogle Scholar
  15. Nascimento, M. C. and F. Toledo. 2008. A hybrid heuristic for the multi-plant capacitated lot sizing problem with setup carry-over. Journal of the Brazilian Computer Society 14(4): 7–15.CrossRefGoogle Scholar
  16. Ramya, R., C. Rajendran, and H. Ziegler. 2016. Capacitated lot-sizing problem with production carry-over and set-up splitting: mathematical models. International Journal of Production Research 54(8): 2332–2344.CrossRefGoogle Scholar
  17. Sahling, F., L. Buschkühl, H. Tempelmeier, and S. Helber. 2009. Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a fix-and-optimize heuristic. Computers & Operations Research 36(9): 2546–2553.CrossRefGoogle Scholar
  18. Sox, C. R. and Y. Gao 1999. The capacitated lot sizing problem with setup carry-over. IIE Transactions 31(2): 173–181.Google Scholar
  19. Stadtler, H. 2003. Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Operations Research 51(3): 487–502.CrossRefGoogle Scholar
  20. Suerie, C. and H. Stadtler. 2003. The capacitated lot-sizing problem with linked lot sizes. Management Science 49(8): 1039–1054.CrossRefGoogle Scholar
  21. Sung, C. and C. T. Maravelias. 2008. A mixed-integer programming formulation for the general capacitated lot-sizing problem. Computers & Chemical Engineering 32(1): 244–259.CrossRefGoogle Scholar
  22. Toledo, C. F. M., M. da Silva Arantes, M. Y. B. Hossomi, P. M. França, and K. Akartunalı. 2015. A relax-and-fix with fix-and-optimize heuristic applied to multi-level lot-sizing problems. Journal of Heuristics 21(5): 687–717.CrossRefGoogle Scholar
  23. Ventura, J. A., D. Kim, and F. Garriga. 2002. Single machine earliness–tardiness scheduling with resource-dependent release dates. European Journal of Operational Research 142(1): 52–69.CrossRefGoogle Scholar
  24. Wagner, H. M. and T. M. Whitin. 1958. Dynamic version of the economic lot size model. Management Science 5(1): 89–96.CrossRefGoogle Scholar
  25. Wu, T., K. Akartunalı, J. Song, and L. Shi. 2013. Mixed integer programming in production planning with backlogging and setup carryover: modeling and algorithms. Discrete Event Dynamic Systems 23(2): 211–239.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ravi Ramya
    • 1
  • Chandrasekharan Rajendran
    • 1
  • Hans Ziegler
    • 2
  • Sanjay Mohapatra
    • 3
  • K. Ganesh
    • 4
  1. 1.Department of Management StudiesIndian Institute of Technology MadrasChennai, TNIndia
  2. 2.Chair of Production and LogisticsUniversitát PassauPassauGermany
  3. 3.Xavier Institute of ManagementBhubaneswarIndia
  4. 4.SCM Center of Competence, McKinsey Knowledge CenterMcKinsey & CompanyChennai, TNIndia

Personalised recommendations