Advertisement

Modeling Propaganda Battle: Decision-Making, Homophily, and Echo Chambers

  • Alexander Petrov
  • Olga Proncheva
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 930)

Abstract

Studies concerning social patterns that appear as a result of propaganda and rumors generally tend to neglect considerations of the behavior of individuals that constitute these patterns. This places obvious limitations upon the scope of research. We propose a dynamical model for the mechanics of the processes of polarization and formation of echo chambers. This model is based on the Rashevsky neurological scheme of decision-making.

Keywords

Social homophily Polarization Selective exposure Echo chambers Decision-making Rashevsky’s neurological scheme Rumors 

References

  1. 1.
    McCombs, M.E., Shaw, D.L.: The agenda-setting function of mass-media. Public Opin. Q. 36(2), 176–187 (2016)CrossRefGoogle Scholar
  2. 2.
    Chomsky, N.: Media Control: The Spectacular Achievements of Propaganda. Seven Stories Press, New York (1997)Google Scholar
  3. 3.
    Herman, E.S., Chomsky, N.: Manufacturing Consent: The Political Economy of the Mass-Media. Pantheon Books, New York (1988)Google Scholar
  4. 4.
    Borum, R.: Understanding the terrorist mindset. FBI Law Enforc. Bull. 72(7), 7–10 (2003)Google Scholar
  5. 5.
    Borum, R.: Radicalization into violent extremism II: a review of conceptual models and empirical research. J. Strateg. Secur. 4(4), 37–62 (2011)CrossRefGoogle Scholar
  6. 6.
    Moghaddam, F.M.: The staircase to terrorism: a psychological exploration. Am. Psychol. 60, 161–169 (2005)CrossRefGoogle Scholar
  7. 7.
    Silber, M.D., Bhatt, A.: Radicalization in the West: The Homegrown Threat. NYPD Intelligence Division, New York Police Department, City of New York (2007)Google Scholar
  8. 8.
    Precht, T.: Home grown terrorism and Islamist radicalization in Europe: from conversion to terrorism. Danish Ministry of Defense (2007)Google Scholar
  9. 9.
    Rashevsky, N.: Mathematical Biophysics: Physico-Mathematical Foundations of Biology. Chicago Press, Univ. of Chicago (1938). University of ChicagozbMATHGoogle Scholar
  10. 10.
    Daley, D.J., Kendall, D.G.: Stochastic rumors. J. Inst. Math. Appl. 1, 42–55 (1964)CrossRefGoogle Scholar
  11. 11.
    Maki, D.P., Thompson, M.: Mathematical Models and Applications. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  12. 12.
    DiFonzo, N., Bordia, P.: Rumor, Gossip and urban legends. Diogenes 54(1), 19–35 (2007)CrossRefGoogle Scholar
  13. 13.
    Chen, G., Shen, H., Ye, T., Chen, G., Kerr, N.: A kinetic model for the spread of rumor in emergencies. Discrete Dyn. Nat. Soc. 2013, 1–8 (2013)MathSciNetGoogle Scholar
  14. 14.
    Isea, R., Mayo-García, R.: Mathematical analysis of the spreading of a rumor among different subgroups of spreaders. Pure Appl. Math. Lett. 2015, 50–54 (2015)Google Scholar
  15. 15.
    Huo, L., Huang, P., Guo, C.: Analyzing the dynamics of a rumor transmission model with incubation. Discrete Dyn. Nat. Soc. 2012, 1–21 (2012). Article ID 328151MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kawachi, K.: Deterministic models for rumor transmission. Nonlinear Anal. Real World Appl. 9(5), 1989–2028 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pearce, C.E.: The exact solution of the general stochastic rumour. Math. Comput. Model. Int. J. 31(10–12), 289–298 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dickinson, R.E., Pearce, C.E.M.: Rumours, epidemics, and processes of mass action: synthesis and analysis. Math. Comput. Model. 38(11–13), 1157–1167 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Belen, S.: The behaviour of stochastic rumours. Ph.D. Thesis, The University of Adelaide (2008)Google Scholar
  20. 20.
    Belen, S., Pearce, C.E.M.: Rumours with general initial conditions. ANZIAM J. 4, 393–400 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Osei, G.K., Thompson, J.W.: The supersession of one rumour by another. J. Appl. Prob. 14(1), 127–134 (1977)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Escalante, R., Odehnal, M.: A deterministic mathematical model for the spread of two rumors. ArXiv preprint arXiv:1709.01726 (2017)
  23. 23.
    Mikhailov, A.P., Marevtseva, N.A.: Models of information warfare. Math. Model. 23(10), 19–32 (2011)zbMATHGoogle Scholar
  24. 24.
    Kaligotla, C., Yucesan, E., Chick, S.E.: An agent based model of spread of competing rumors through online interactions on social media. In: 9th International Proceedings of the 2015 Winter Simulation Conference, pp. 3985–3996 (2015)Google Scholar
  25. 25.
    Breer, V.V., Novikov, D.A., Rogatkin, A.D.: Mob Control: Models of Threshold Collective Behavior. SSDC, vol. 85. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51865-7CrossRefzbMATHGoogle Scholar
  26. 26.
    Gubanov, D.A., Novikov, D.A., Chkhartishvili, A.G.: Informational influence and informational control models in social networks. Autom. Remote Control 72(7), 1557–1567 (2011)CrossRefGoogle Scholar
  27. 27.
    Doerr, B., Fouz, M., Friedrich, T.: Why rumors spread so quickly in social networks. Commun. ACM 55(6), 70–75 (2012)CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Tang, C., Weigang, L.: Cooperative and competitive dynamics model for information propagation in online social networks. J. Appl. Math. 2014, 1–12 (2014). Article ID 610382MathSciNetGoogle Scholar
  29. 29.
    Yanagizawa-Drott, D.: Propaganda and conflict: evidence from the rwandan genocide. Q. J. Econ. 129(4), 1947–1994 (2014)CrossRefGoogle Scholar
  30. 30.
    Mikhailov, A., Petrov, A., Pronchev, G., Proncheva, O.: Modeling a decrease in public attention to a past one-time political event. Dokl. Math. 97(3), 247–249 (2018)CrossRefGoogle Scholar
  31. 31.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)CrossRefGoogle Scholar
  32. 32.
    Garrett, R.K.: Politically motivated reinforcement seeking: reframing the selective exposure debate. J. Commun. 59(4), 676–699 (2009)CrossRefGoogle Scholar
  33. 33.
    Fiorina, M.P., Abrams, S.J.: Political polarization in the American public. Ann. Rev. Polit. Sci. 26(10), 1531–1542 (2015)Google Scholar
  34. 34.
    Barbera, P., Jost, J.T., Nagler, J., Tucker, J.A., Bonneau, R.: Tweeting from left to right: is online political communication more than an echo chamber? Psychol. Sci. 26(10), 1531–1542 (2015)CrossRefGoogle Scholar
  35. 35.
    Petrov, A.P., Maslov, A.I., Tsaplin, N.A.: Modeling position selection by individuals during information warfare in society. Math. Models Comput. Simul. 8(4), 401–408 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Keldysh Institute of Applied MathematicsMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations