Advertisement

Preoperative Planning and Simulation Framework for Twin-to-Twin Transfusion Syndrome Fetal Surgery

  • Jordina Torrents-BarrenaEmail author
  • Rocío López-Velazco
  • Narcís Masoller
  • Brenda Valenzuela-Alcaraz
  • Eduard Gratacós
  • Elisenda Eixarch
  • Mario Ceresa
  • Miguel Ángel González Ballester
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11041)

Abstract

Twin-to-twin transfusion syndrome (TTTS) is a complication of monochorionic twin pregnancies in which arteriovenous vascular communications in the shared placenta lead to blood transfer between the fetuses. Selective fetoscopic laser photocoagulation of abnormal blood vessel connections has become the most effective treatment. Preoperative planning is thus an essential prerequisite to increase survival rates for severe TTTS. In this work, we present the very first TTTS fetal surgery planning and simulation framework. The placenta is segmented in both magnetic resonance imaging (MRI) and 3D ultrasound (US) via novel 3D convolutional neural networks. Likewise, the umbilical cord is extracted in MRI using 3D convolutional long short-term memory units. The detection of the placenta vascular tree is carried out through a curvature-based corner detector in MRI, and the Modified Spatial Kernelized Fuzzy C-Means with a Markov random field refinement in 3D US. The proposed TTTS planning software integrates all aforementioned algorithms to explore the intrauterine environment by simulating the fetoscope camera, determine the correct entry point, train doctors’ movements ahead of surgery, and consequently, improve the success rate and reduce the operation time. The promising results indicate potential of our TTTS planner and simulator for further assessment on clinical real surgeries.

Keywords

Twin-to-twin transfusion syndrome Fetal surgical planning and simulation MITK Computer vision Deep learning 

Notes

Acknowledgments

This work was supported by CELLEX Foundation and the Google Women Techmakers scholarship awarded to Jordina Torrents-Barrena. Also this work was funded by the Spanish Ministry of Economy and Competitiveness under the María de Maeztu Units of Excellence Programme [MDM-2015-0502].

References

  1. 1.
    Papanna, R., et al.: Histologic changes of the fetal membranes after fetoscopic laser surgery for twin-twin transfusion syndrome. Pediatr. Res. 78, 247–255 (2015)CrossRefGoogle Scholar
  2. 2.
    Pratt, R., Deprest, J., Vercauteren, T., Ourselin, S., David, A.L.: Computer-assisted surgical planning and intraoperative guidance in fetal surgery: a systematic review. Prenat. Diagn. 35, 1159–1166 (2015)CrossRefGoogle Scholar
  3. 3.
    Luo, J., et al.: In vivo quantification of placental insufficiency by BOLD MRI: a human study. Sci. Rep. 7(3713), 1–10 (2017)Google Scholar
  4. 4.
    Luks, F.I., Carr, S.R., Ponte, B., Rogg, J.M., Tracy Jr., T.F.: Preoperative planning with magnetic resonance imaging and computerized volume rendering in twin-to-twin transfusion syndrome. Am. J. Obstet. Gynecol. 185(1), 216–219 (2001)CrossRefGoogle Scholar
  5. 5.
    Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16, 1550–1564 (2012)CrossRefGoogle Scholar
  6. 6.
    Ceresa, M., et al.: Surgical planning system for twin-to-twin transfusion syndrome fetal surgery. In: Proceedings of the 31st International Conference on Computer Assisted Radiology and Surgery, pp. S100–S101 (2017)Google Scholar
  7. 7.
    Monga, O., Benayoun, S.: Using partial derivatives of 3D images to extract typical surface features. Comput. Vis. Image Underst. 660, 171–189 (1995)CrossRefGoogle Scholar
  8. 8.
    Torrents-Barrena, J., et al.: LSTM fully convolutional neural networks for umbilical cord segmentation in TTTS foetal surgery planning. In: Proceedings of the 32nd International Conference on Computer Assisted Radiology and Surgery (2018)Google Scholar
  9. 9.
    Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the 4th International Conference on 3D Vision, pp. 565–571 (2016)Google Scholar
  10. 10.
    Castro, A., Boveda, C., Arcay, B.: Comparison of various fuzzy clustering algorithms in the detection of ROI in lung CT and a modified kernelized spatial fuzzy c-means algorithm. In: Proceedings of the 10th Information Technology and Applications in Biomedicine (2010)Google Scholar
  11. 11.
    Moussouris, J.: Gibbs and Markov random systems with constraints. J. Stat. Phys. 10(1), 11–33 (1974)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Danielsson, P.-E.: Euclidean distance mapping. Comput. Graph. Image Process. 14(3), 227–248 (1980)CrossRefGoogle Scholar
  13. 13.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, pp. 171–180 (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jordina Torrents-Barrena
    • 1
    Email author
  • Rocío López-Velazco
    • 1
  • Narcís Masoller
    • 2
  • Brenda Valenzuela-Alcaraz
    • 2
  • Eduard Gratacós
    • 2
  • Elisenda Eixarch
    • 2
  • Mario Ceresa
    • 1
  • Miguel Ángel González Ballester
    • 1
    • 3
  1. 1.BCN MedTechUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Fetal i+D Medicine Research Center, BCNatal - Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, and CIBER-ERBarcelonaSpain
  3. 3.ICREABarcelonaSpain

Personalised recommendations