Advertisement

Patch-Based Image Similarity for Intraoperative 2D/3D Pelvis Registration During Periacetabular Osteotomy

  • Robert B. GruppEmail author
  • Mehran Armand
  • Russell H. Taylor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11041)

Abstract

Periacetabular osteotomy is a challenging surgical procedure for treating developmental hip dysplasia, providing greater coverage of the femoral head via relocation of a patient’s acetabulum. Since fluoroscopic imaging is frequently used in the surgical workflow, computer-assisted X-Ray navigation of osteotomes and the relocated acetabular fragment should be feasible. We use intensity-based 2D/3D registration to estimate the pelvis pose with respect to fluoroscopic images, recover relative poses of multiple views, and triangulate landmarks which may be used for navigation. Existing similarity metrics are unable to consistently account for the inherent mismatch between the preoperative intact pelvis, and the intraoperative reality of a fractured pelvis. To mitigate the effect of this mismatch, we continuously estimate the relevance of each pixel to solving the registration and use these values as weightings in a patch-based similarity metric. Limiting computation to randomly selected subsets of patches results in faster runtimes than existing patch-based methods. A simulation study was conducted with random fragment shapes, relocations, and fluoroscopic views, and the proposed method achieved a 1.7 mm mean triangulation error over all landmarks, compared to mean errors of 3 mm and 2.8 mm for the non-patched and image-intensity-variance-weighted patch similarity metrics, respectively.

Keywords

X-ray navigation 2D/3D registration Periacetabular osteotomy 

References

  1. 1.
    Murphy, S.B., Ganz, R., Müller, M.: The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J. Bone Joint Surg. Am. 77(7), 985–989 (1995)CrossRefGoogle Scholar
  2. 2.
    Ganz, R., Klaue, K., Vinh, T.S., Mast, J.W.: A new periacetabular osteotomy for the treatment of hip dysplasias technique and preliminary results. Clin. Orthop. Relat. Res. 232, 26–36 (1988)Google Scholar
  3. 3.
    Troelsen, A.: Surgical advances in periacetabular osteotomy for treatment of hip dysplasia in adults. Acta Orthop. 80(sup332), 1–33 (2009)CrossRefGoogle Scholar
  4. 4.
    Langlotz, F., Bächler, R., Berlemann, U., Nolte, L.P., Ganz, R.: Computer assistance for pelvic osteotomies. Clin. Orthop. Relat. Res. 354, 92–102 (1998)CrossRefGoogle Scholar
  5. 5.
    Murphy, R.J., Armiger, R.S., Lepistö, J., Mears, S.C., Taylor, R.H., Armand, M.: Development of a biomechanical guidance system for periacetabular osteotomy. Int J Comput Assist Radiol Surg 10(4), 497–508 (2015)CrossRefGoogle Scholar
  6. 6.
    Liu, L., et al.: Periacetabular osteotomy through the pararectus approach: technical feasibility and control of fragment mobility by a validated surgical navigation system in a cadaver experiment. Int Orthop 40(7), 1389–1396 (2016)CrossRefGoogle Scholar
  7. 7.
    Troelsen, A., Elmengaard, B., Søballe, K.: A new minimally invasive transsartorial approach for periacetabular osteotomy. J. Bone Joint Surg. Am. 90(3), 493–498 (2008)CrossRefGoogle Scholar
  8. 8.
    Markelj, P., Tomaževič, D., Likar, B., Pernuš, F.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3), 642–661 (2012)CrossRefGoogle Scholar
  9. 9.
    Gong, R.H., Stewart, J., Abolmaesumi, P.: Multiple-object 2-D-3-D registration for noninvasive pose identification of fracture fragments. IEEE Trans. Biomed. Eng. 58(6), 1592–1601 (2011)CrossRefGoogle Scholar
  10. 10.
    Joskowicz, L., Milgrom, C., Simkin, A., Tockus, L., Yaniv, Z.: FRACAS: a system for computer-aided image-guided long bone fracture surgery. Comput. Aided Surg. 3(6), 271–288 (1998)CrossRefGoogle Scholar
  11. 11.
    Knaan, D., Joskowicz, L.: Effective intensity-based 2D/3D rigid registration between fluoroscopic X-Ray and CT. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 351–358. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39899-8_44CrossRefGoogle Scholar
  12. 12.
    Otake, Y., et al.: Intraoperative image-based multi-view 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration. IEEE Trans. Med. Imag. 31(4), 948–962 (2012)CrossRefGoogle Scholar
  13. 13.
    Krčah, M., Székely, G., Blanc, R.: Fully automatic and fast segmentation of the femur bone from 3D-CT images with no shape prior. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 2087–2090 (2011)Google Scholar
  14. 14.
    Markelj, P., Likar, B., Pernuš, F.: Standardized evaluation methodology for 3D/2D registration based on the visible human data set. Med. Phys. 37(9), 4643–4647 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Robert B. Grupp
    • 1
    Email author
  • Mehran Armand
    • 2
    • 3
  • Russell H. Taylor
    • 1
  1. 1.Department of Computer ScienceJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Johns Hopkins Applied Physics LaboratoryLaurelUSA

Personalised recommendations