Advertisement

Robustness and Emergent Dynamics in Noisy Biological Systems

  • Christian CherubiniEmail author
  • Simonetta Filippi
  • Alessandro Loppini
Chapter
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 23)

Abstract

The concepts of robustness and stability play a central role in many natural phenomena ranging from Astrophysics up to Life. In this contribution we discuss these concepts by specifically focusing on a biological paradigmatic mathematical model for the nonlinear electrophysiology of clusters of animal beta-cells.

Keywords

Robustness Systems biology Mathematical modeling Computational electrophysiology Noisy systems 

Notes

Acknowledgments

The authors acknowledge ICRANet and INdAM-GNFM for support.

References

  1. Bertolaso, M., Capolupo, A., Cherubini, C., Filippi, S., Gizzi, A., Loppini, A., & Vitiello, G. (2015). The role of coherence in emergent behavior of biological systems. Electromagnetic Biology and Medicine, 34, 138–140.CrossRefGoogle Scholar
  2. Bini, D., Cherubini, C., & Filippi, S. (2006). Heat transfer in Fitzhugh-Nagumo models. Physical Review E, 74(4), 041905.CrossRefGoogle Scholar
  3. Bini, D., Cherubini, C., Filippi, S., Gizzi, A., & Ricci, P. E. (2010). On spiral waves arising in natural systems. Communications in Computational Physics, 8(3), 610.Google Scholar
  4. Celletti, A. (2010). Stability and Chaos in celestial mechanics. Berlin: Springer.CrossRefGoogle Scholar
  5. Cherubini, C., & Filippi, S. (2009). Lagrangian field theory of reaction-diffusion. Physical Review E, 80, 046117-1–046117-14.CrossRefGoogle Scholar
  6. Cherubini, C., Filippi, S., Gizzi, A., & Loppini, A. (2015). Role of topology in complex functional networks of beta cells. Physical Review E, 92, 042702-1–042702-12.CrossRefGoogle Scholar
  7. Gasiorowicz, S. (2003). Quantum physics (3rd ed, Supplementary Material). Delhi/Massachusetts: Wiley.Google Scholar
  8. Giuliani, A., Filippi, S., & Bertolaso, M. (2014). Why network approach can promote a new way of thinking in biology. Frontiers in Genetics, 5, 83.CrossRefGoogle Scholar
  9. Hall, J. E. (2015). Guyton and Hall textbook of medical physiology (13th ed.). Philadelphia: Saunders.Google Scholar
  10. Hobill, D., Burd, A., & Coley, A. (1994). Deterministic chaos in general relativity. Boston: Springer.CrossRefGoogle Scholar
  11. Jackson, A. E. (1992). Perspectives of nonlinear dynamics (Vol. 2). Cambridge, MA: Cambridge University Press.Google Scholar
  12. Kondepudi, D., & Prigogine, I. (1998). Modern thermodynamics. From heat engines to dissipative structures. Chichester: Wiley.Google Scholar
  13. Lancet Editorial. (2011). The diabetes pandemic. Lancet, 378, 99.CrossRefGoogle Scholar
  14. Lemons, D. (2002). An introduction to stochastic processes in physics. Baltimore: Johns Hopkins University Press.Google Scholar
  15. Loppini, A., Capolupo, A., Cherubini, C., Gizzi, A., Bertolaso, M., Filippi, S., & Vitiello, G. (2014). On the coherent behavior of pancreatic beta cell clusters. Physics Letters A, 378, 3210–3217.CrossRefGoogle Scholar
  16. Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: W H Freeman & Co.Google Scholar
  17. Noble, D. (2006). The music of life. Oxford: Oxford University Press.Google Scholar
  18. Ohanian, H. C., & Ruffini, R. (1994). Gravitation and spacetime (2nd ed.). New York: W. W. Norton & Company.Google Scholar
  19. Portuesi, R., Cherubini, C., Gizzi, A., Buzzetti, R., Pozzilli, P., & Filippi, S. (2013). A stochastic mathematical model to study the autoimmune progression towards type 1 diabetes. Diabetes/Metabolism Research and Reviews, 29, 194–203.CrossRefGoogle Scholar
  20. Sherman, A., & Rinzel, J. (1991). Model for synchronization of pancreatic beta cells by gap junction coupling. Biophysical Journal, 59, 547–559.CrossRefGoogle Scholar
  21. Sherman, A., Rinzel, J., & Keizer, J. (1988). Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophysical Journal, 54, 411–425.CrossRefGoogle Scholar
  22. Strogatz, S. H. (2014). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering (2nd ed.). Boulder: Westview Press.Google Scholar
  23. Tassoul, J.-L. (1978). Theory of rotating stars. Princeton: Princeton University Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Christian Cherubini
    • 1
    • 2
    Email author
  • Simonetta Filippi
    • 1
    • 2
  • Alessandro Loppini
    • 1
  1. 1.Unit of Nonlinear Physics and Mathematical Modeling, Departmental Faculty of EngineeringUniversity Campus Bio-Medico of RomeRomeItaly
  2. 2.International Center for Relativistic Astrophysics – I.C.R.AUniversity Campus Bio-Medico of RomeRomeItaly

Personalised recommendations