Advertisement

Robustness and Autonomy in Biological Systems: How Regulatory Mechanisms Enable Functional Integration, Complexity and Minimal Cognition Through the Action of Second-Order Control Constraints

  • Leonardo BichEmail author
Chapter
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 23)

Abstract

Living systems employ several mechanisms and behaviors to achieve robustness and maintain themselves under changing internal and external conditions. Regulation stands out from them as a specific form of higher-order control, exerted over the basic regime responsible for the production and maintenance of the organism, and provides the system with the capacity to act on its own constitutive dynamics. It consists in the capability to selectively shift between different available regimes of self-production and self-maintenance in response to specific signals and perturbations, due to the action of a dedicated subsystem which is operationally distinct from the regulated ones. The role of regulation, however, is not exhausted by its contribution to maintain a living system’s viability. While enhancing robustness, regulatory mechanisms play a fundamental role in the realization of an autonomous biological organization. Specifically, they are at the basis of the remarkable integration of biological systems, insofar as they coordinate and modulate the activity of distinct functional subsystems. Moreover, by implementing complex and hierarchically organized control architectures, they allow for an increase in structural and organizational complexity while minimizing fragility. Finally, they endow living systems, from their most basic unicellular instances, with the capability to control their own internal dynamics to adaptively respond to specific features of their interaction with the environment, thus providing the basis for the emergence of minimal forms of cognition.

Keywords

Regulation Control Functional integration Organization Autonomy Cognition 

Notes

Acknowledgements

This project has received funding from: the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme – grant agreement n° 637647 – IDEM; from the Ministerio de Economia, Industria y Competitividad (MINECO), Spain (‘Ramon y Cajal’ Programme RYC-2016-19798 and research project FFI2014-52173-P); and from the Basque Government (Project: IT 590-13).

References

  1. Alexandre, G. (2010). Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology, 156(8), 2283–2293.CrossRefGoogle Scholar
  2. Arnellos, A., & Moreno, A. (2012). How functional organization originated in prebiotic evolution. Ludus Vitalis, XX(37), 1–23.Google Scholar
  3. Arnellos, A., Ruiz-Mirazo, K., & Moreno, A. (2014). Organizational requirements for multicellular autonomy: Insights from a comparative case study. Biology and Philosophy, 29(6), 851–884.CrossRefGoogle Scholar
  4. Barandiaran, X., & Moreno, A. (2006). On what makes certain dynamical systems cognitive: A minimally cognitive organization program. Adaptive Behavior, 14(2), 171–185.CrossRefGoogle Scholar
  5. Bechtel, W. (2007). Biological mechanisms: Organized to maintain autonomy. In F. Boogerd, F. Bruggerman, J. H. Hofmeyr, & H. V. Westerhoff (Eds.), Systems biology: Philosophical foundations (pp. 269–302). Amsterdam: Elsevier.CrossRefGoogle Scholar
  6. Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. New York: Routledge.Google Scholar
  7. Bechtel, W. (2014). Cognitive biology: Surprising model organisms for cognitive science. In Proceedings of the 36th annual conference of the cognitive science society (pp. 158–163).Google Scholar
  8. Bechtel, W. (2017a). Explicating top-down causation using networks and dynamics. Philosophy of Science, 84, 253–274.CrossRefGoogle Scholar
  9. Bechtel, W. (2017b). Systems biology: Negotiating between holism and reductionism. In S. Green (Ed.), Philosophy of systems biology: Perspectives from scientists and philosophers (pp. 25–36). New York: Springer.CrossRefGoogle Scholar
  10. Bernard, C. (1865). Introduction à l’étude de la médecine expérimentale. Paris: Balliére.Google Scholar
  11. Bich, L. (2016). Systems and organizations: Theoretical tools, conceptual distinctions and epistemological implications. In G. Minati, M. R. Abram, & E. Pessa (Eds.), Towards a Post-Bertalanffy Systemics (pp. 203–209). New York: Springer.CrossRefGoogle Scholar
  12. Bich, L., & Arnellos, A. (2012). Autopoiesis, autonomy and organizational biology: Critical remarks on “Life After Ashby”. Cybernetics and Human Knowing, 19(4), 75–103.Google Scholar
  13. Bich, L., & Damiano, L. (2008). Order in the nothing: Autopoiesis and the organizational characterization of the living. Electronic Journal of Theoretical Physics – Special Issue Physics of Emergence and Organization, 4(16), 343–373.Google Scholar
  14. Bich, L., & Damiano, L. (2012a). Life, autonomy and cognition: An organizational approach to the definition of the universal properties of life. Origins of Life and Evolution of Biospheres, 42(5), 389–397.CrossRefGoogle Scholar
  15. Bich, L., & Damiano, L. (2012b). On the emergence of biology from chemistry: A discontinuist perspective from the point of view of stability and regulation. Origins of Life and Evolution of Biospheres, 42(5), 475–482.CrossRefGoogle Scholar
  16. Bich, L., & Moreno, A. (2016). The role of regulation in the origin and synthetic modelling of minimal cognition. Biosystems, 148, 12–21.CrossRefGoogle Scholar
  17. Bich, L., Mossio, M., Ruiz-Mirazo, K., & Moreno, A. (2016). Biological regulation: Controlling the system from within. Biology and Philosophy, 31(2), 237–265.CrossRefGoogle Scholar
  18. Bitbol, M., & Luisi, P. L. (2004). Autopoiesis with or without cognition: Defining life at its edge. Journal of the Royal Society Interface, 1(1), 99–107.CrossRefGoogle Scholar
  19. Bourgine, P., & Stewart, J. (2004). Autopoiesis and cognition. Artificial Life, 10(3), 327–345.CrossRefGoogle Scholar
  20. Chen, C. (2008). Review on robustness in systems biology. Journal of Biomechatronics Engineering, 1(2), 17–28.Google Scholar
  21. Christensen, W. (2007). The evolutionary origins of volition. In D. Spurrett, H. Kincaid, D. Ross, & L. Stephens (Eds.), Distributed cognition and the will: Individual volition and social context (pp. 255–287). Cambridge, MA: The MIT Press.Google Scholar
  22. Christensen, W. D., & Hooker, C. (2000). An interactivist-constructivist approach to intelligence: Self-directed anticipative learning. Philosophical Psychology, 13, 5–45.CrossRefGoogle Scholar
  23. Cornish-Bowden, A. (2006). Putting the systems back into systems biology. Perspectives in Biology and Medicine, 49(4), 475–489.CrossRefGoogle Scholar
  24. Damiano, L., & Luisi, P. L. (2010). Towards an autopoietic redefinition of life. Origins of Life and Evolution of Biospheres, 40(2), 145–149.CrossRefGoogle Scholar
  25. Dupré, J., & O’Malley, M. (2005). Fundamental issues in systems biology. Bio Essays, 27, 1270–1276.Google Scholar
  26. Eisenbach, M. (Ed.). (2004). Chemotaxis. Singapore: Imperial College Press.Google Scholar
  27. Eisenbach, M. (2007). A hitchhiker’s guide through advances and conceptual changes in chemotaxis. Journal of Cellular Physiology, 213, 574–580.CrossRefGoogle Scholar
  28. Ganti, T. (1975). Organization of chemical reactions into dividing and metabolizing units: The chemotons. Bio Systems, 7, 15–21.CrossRefGoogle Scholar
  29. Ganti, T. (1979). A theory of biochemical supersystems. Baltimore: University Park Press.Google Scholar
  30. Ganti, T. (2003a). The principles of life. Oxford: Oxford University Press.CrossRefGoogle Scholar
  31. Ganti, T. (2003b). Chemoton theory. New York: Kluwer Academic/Plenum Publisher.CrossRefGoogle Scholar
  32. Godfrey-Smith, P. (2016). Individuality, subjectivity, and minimal cognition. Biology and Philosophy, 31, 775–796.  https://doi.org/10.1007/s10539-016-9543-1.CrossRefGoogle Scholar
  33. Griesemer, J., & Szathmáry, E. (2009). Ganti’s chemoton model and life criteria. In S. Rasmussen, M. Bedau, L. Chen, D. Deamer, D. Krakauer, N. Packard, & P. Stadler (Eds.), Protocells. Bridging nonliving and living matter (pp. 481–513). Cambridge, MA: The MIT Press.Google Scholar
  34. Heschl, A. (1990). L = C. A simple equation with astonishing consequences. Journal of Theoretical Biology, 145, 13–40.CrossRefGoogle Scholar
  35. Hofmeyr, J. H., & Cornish-Bowden, A. (1991). Quantitative assessment of regulation in metabolic systems. European Journal of Biochemistry/FEBS, 200(1), 223–236.CrossRefGoogle Scholar
  36. Hofmeyr, J. S., & Cornish-Bowden, A. (2000). Regulating the cellular economy of supply and demand. FEBS Letters, 476(1–2), 47–51.CrossRefGoogle Scholar
  37. Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.CrossRefGoogle Scholar
  38. Kant, I. (1790). Kritik der Urteilskraft.Google Scholar
  39. Karpen, J. W. (2004). Ion channel structure and the promise of bacteria. The Journal of General Physiology, 124(3), 199–201.CrossRefGoogle Scholar
  40. Kauffman, S. A. (1986). Autocatalytic sets of proteins. Journal of Theoretical Biology, 119(1), 1–24.CrossRefGoogle Scholar
  41. Kauffman, S. A. (2000). Investigations. New York: Oxford University Press.Google Scholar
  42. Kirschner, M. W., & Gerhart, J. C. (2005). The plausibility of life: Resolving Darwin’s dilemma. New Haven: Yale University Press.Google Scholar
  43. Kitano, H. (2004). Biological robustness. Nature Reviews. Genetics, 5(11), 826–837.CrossRefGoogle Scholar
  44. Kitano, H. (2007). Towards a theory of biological robustness. Molecular Systems Biology, 3(137), 1–7.Google Scholar
  45. Kulasekara, H. D., & Miller, S. I. (2007). Threonine phosphorylation times bacterial secretion. Nature Cell Biology, 9(7), 734–736.CrossRefGoogle Scholar
  46. Lamelas, A., Gosalbes, M. J., Manzano-Marín, A., Peretó, J., Moya, A., & Latorre, A. (2011). Serratia symbiotica from the aphid Cinara cedri: A missing link from facultative to obligate insect endosymbiont. PLoS Genetics, 7(11), e1002357.CrossRefGoogle Scholar
  47. Letelier, J.-C., Soto-Andrade, J., Guíñez Abarzúa, F., Cornish-Bowden, A., & Luz Cárdenas, M. (2006). Organizational invariance and metabolic closure: Analysis in terms of (M,R) systems. Journal of Theoretical Biology, 238(4), 949–961.CrossRefGoogle Scholar
  48. Luisi, P. L. (2006). The emergence of life. From chemical origins to synthetic biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Mansy, S. S., Schrum, J. P., Krishnamurthy, M., Tobé, S., Treco, D. a., & Szostak, J. W. (2008). Template-directed synthesis of a genetic polymer in a model protocell. Nature, 454(7200), 122–125.CrossRefGoogle Scholar
  50. Maturana, H., & Varela, F. J. (1980). Autopoiesis and cognition. The realization of the living. Dordrecht: Reidel Publishing.CrossRefGoogle Scholar
  51. Meyer, F. (1967). Situation épistémologique de la biologie. In J. Piaget (Ed.), Logique et connaissance scientifique. Encyclopédie de la Pléyade (pp. 781–821). Paris: Gallimard.Google Scholar
  52. Mitchell, S. (2009). Unsimple truths: Science, complexity, and policy. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  53. Montévil, M., & Mossio, M. (2015). Biological organisation as closure of constraints. Journal of Theoretical Biology, 372, 179–191.CrossRefGoogle Scholar
  54. Montévil, M., Mossio, M., Pocheville, A., & Longo, G. (2016). Theoretical principles for biology: Variation. Progress in Biophysics and Molecular Biology, 122, 36–50.  https://doi.org/10.1016/j.pbiomolbio.2016.08.005.CrossRefGoogle Scholar
  55. Moreno, A. (2016). Some conceptual issues in the transition from chemistry to biology. History and Philosophy of the Life Sciences, 38(4), 1–16.CrossRefGoogle Scholar
  56. Moreno, A., & Mossio, M. (2015). Biological autonomy: A philosophical and theoretical enquiry. Dordrecht: Springer.CrossRefGoogle Scholar
  57. Moreno, A., & Ruiz-Mirazo, K. (2009). The problem of the emergence of functional diversity in prebiotic evolution. Biology and Philosophy, 24(5), 585–605.CrossRefGoogle Scholar
  58. Moreno, A., Umerez, J., & Ibanez, J. (1997). Cognition and life. The autonomy of cognition. Brain & Cognition, 34(1), 107–129.CrossRefGoogle Scholar
  59. Moreno, A., Ruiz-Mirazo, K., & Barandiaran, X. (2011). The impact of the paradigm of complexity on the foundational framework of biology and cognitive science. In C. Hooker (Ed.), Philosophy of complex systems (pp. 311–333). Amsterdam: North Holland.CrossRefGoogle Scholar
  60. Mossio, M., & Bich, L. (2017). What makes biological organisation teleological? Synthese, 194(4), 1089–1114.CrossRefGoogle Scholar
  61. Mossio, M., & Moreno, A. (2010). Organisational closure in biological organisms. History and Philosophy of the Life Sciences, 32, 269–288.Google Scholar
  62. Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. The British Journal for the Philosophy of Science, 60(4), 813–841.CrossRefGoogle Scholar
  63. Mossio, M., Bich, L., & Moreno, A. (2013). Emergence, closure and inter-level causation in biological systems. Erkenntnis, 78(2), 153–178.CrossRefGoogle Scholar
  64. Mossio, M., Montévil, M., & Longo, G. (2016). Theoretical principles for biology: Organization. Progress in Biophysics and Molecular Biology., 122, 24–35.  https://doi.org/10.1016/j.pbiomolbio.2016.07.005.CrossRefGoogle Scholar
  65. Nghe, P., Hordijk, W., Kauffman, S. A., Walker, S. I., Schmidt, F. J., Kemble, H., et al. (2015). Prebiotic network evolution: Six key parameters. Molecular Bio Systems., 11, 3206–3217.  https://doi.org/10.1039/C5MB00593K.CrossRefGoogle Scholar
  66. Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley.Google Scholar
  67. Pascal, R., & Pross, A. (2016). The logic of life. Origins of Life and Evolution of Biospheres, 46(4), 507–513.CrossRefGoogle Scholar
  68. Pattee, H. H. (1972). The nature of hierarchical controls in living matter. In R. Rosen (Ed.), Foundations of mathematical biology. Volume I, S ubcellular Systems (pp. 1–22). New York: Academic Press.Google Scholar
  69. Pattee, H. H. (Ed.) (1973). Hierarchy theory. New York: Braziller.Google Scholar
  70. Piaget, J. (1967). Biologie et Connaissance. Paris: Gallimard.Google Scholar
  71. Piedrafita, G., Montero, F., Morán, F., Cárdenas, M. L., & Cornish-Bowden, A. (2010). A simple self-maintaining metabolic system: Robustness, autocatalysis, bistability. PLoS Computational Biology, 6(8), e1000872.CrossRefGoogle Scholar
  72. Rosen, R. (1967). Optimality principles in biology. London: Butterworths.CrossRefGoogle Scholar
  73. Rosen, R. (1970). Dynamical system theory in biology. Stability theory and its applications. New York: Wiley.Google Scholar
  74. Rosen, R. (1972). Some relational cell models: The metabolism-repair systems. In R. Rosen (Ed.), Foundations of mathematical biology. Volume II, Cellular Systems (pp. 217–253). New York: Academic Press.CrossRefGoogle Scholar
  75. Rosen, R. (1978). Fundamentals of measurement and representation of natural systems. NewYork: North Holland.Google Scholar
  76. Rosen, R. (1985). Anticipatory systems. Oxford: Pergamon Press.Google Scholar
  77. Rosen, R. (1991). Life itself. A comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.Google Scholar
  78. Ruiz-Mirazo, K., & Moreno, A. (2004). Basic autonomy as a fundamental step in the synthesis of life. Artificial ife, 10(3), 235–259.Google Scholar
  79. Ruiz-Mirazo, K., Peretò, J., & Moreno, A. (2004). A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere, 34(3), 323–346.CrossRefGoogle Scholar
  80. Schafer, J. R. A., Fell, D. A., Rothman, D. L., & Shulman, R. G. (2005). Phosphorylation of allosteric enzymes can serve homeostasis rather than control flux: The example of glycogen synthase. In R. G. Shulman & D. L. Rothman (Eds.), Metabolomics by in vivo NMR (pp. 59–71). Chichester: Wiley.CrossRefGoogle Scholar
  81. Semenov, S. N., Kraft, L. J., Ainla, A., Zhao, M., Baghbanzadeh, M., Campbell, V. E., et al. (2016). Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature, 537(7622), 656–660.CrossRefGoogle Scholar
  82. Shirt-Ediss, B. (2016). Modelling early transitions towards autonomous protocells. Ph.D. Dissertation. University of the Basque Country.Google Scholar
  83. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., & Doyle, J. (2004). Robustness of cellular functions. Cell, 118(6), 675–685.CrossRefGoogle Scholar
  84. Stock, J. B., Ninfa, A. A., & Stock, A. M. (1989). Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiological Reviews, 53(4), 450–490.Google Scholar
  85. Umerez, J., & Mossio, M. (2013). Constraint. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.), Encyclopedia of systems biology (pp. 490–493). New York: Springer.CrossRefGoogle Scholar
  86. van Duijn, M., Keijzer, F., & Franken, D. (2006). Principles of minimal cognition: Casting cognition as sensorimotor coordination. Adaptive Behavior, 14(2), 157–170.CrossRefGoogle Scholar
  87. Van Segbroeck, S., Nowé, A., & Lenaerts, T. (2009). Stochastic simulation of the chemoton. Artificial Life, 15, 213–226.CrossRefGoogle Scholar
  88. Varela, F. J. (1979). Principles of biological autonomy. New York: North Holland.Google Scholar
  89. Varela, F. J., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Bio Systems, 5(4), 187–196.CrossRefGoogle Scholar
  90. Varela, F. J., Thomson, E., & Rosch, E. (1991). The embodied mind. Cognitive science and human experience. Cambridge, MA: The MIT Press.Google Scholar
  91. Veloso, F. (2017). On the developmental self-regulatory dynamics and evolution of individuated multicellular organisms. Journal of Theoretical Biology, 417, 84–99.CrossRefGoogle Scholar
  92. Wiley, H. R. (2013). Animal communication and noise. In H. Brum (Ed.), Animal communication and noise (pp. 7–30). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  93. Winning, J., & Bechtel, B. (2018). Rethinking causality in biological and neural mechanisms: Constraints and control. Minds and Machines, 28, 287–310.  https://doi.org/10.1007/s11023-018-9458-5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.IAS-Research Centre for Life, Mind, and Society, Department of Logic and Philosophy of ScienceUniversity of the Basque Country (UPV/EHU)Donostia-San SebastianSpain

Personalised recommendations