Advertisement

Dynamical Rearrangement of Symmetry and Robustness in Physics and Biology

  • Giuseppe VitielloEmail author
Chapter
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 23)

Abstract

The mechanism of the dynamical rearrangement of symmetry in quantum field theory underlies the phenomenon of coherent boson condensation in the vacuum state. Coherent states appear to be related to fractal self-similarity. The dynamical paradigm of coherence opens the way to an integrated vision of natural phenomena and it may possibly rule morphogenetic processes. Robustness properties of physical systems, such as dynamical and functional robustness, topological robustness, multilevel and semantic robustness may find their root in coherence. Possible extension to biology and neuroscience is discussed.

Keywords

Symmetry Invariance Conservation laws Coherence Quantum field theory Fractals 

Notes

Acknowledgments

I thank the anonymous referee and the Editors of this volume for their suggestions and help. Of course, the responsibility of statements and positions presented in this paper is only mine. I am glad to dedicate this work to the memory of Walter J. Freeman in the occasion of one year since his departure and to celebrate the wisdom of Antonio Gramsci on the 80th year since his tragic death.

References

  1. Anderson, P. W. (1984). Notions of condensed matter physics. Menlo Park: Benjamin.Google Scholar
  2. Atmanspacher, H. (2015). Quantum approaches to consciousness. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/qt-consciousness/
  3. Auletta, G., Fortunato, M., & Parisi, G. (2009). Quantum mechanics. Cambridge: Cambridge Univ. Press.CrossRefGoogle Scholar
  4. Basti, G., Capolupo, A., & Vitiello, G. (2017). Quantum field theory and coalgebraic logic in theoretical computer science. Progress in Biophysics and Molecular Biology, 130 A, 39–52 arXiv:1701.00527v1 [quant-ph].CrossRefGoogle Scholar
  5. Blasone, M., Jizba, P., & Vitiello, G. (2011). Quantum field theory and its macroscopic manifestations. London: Imperial College Press.CrossRefGoogle Scholar
  6. Bogoliubov, N., Logunov, A. A., & Todorov, I. T. (1975). Introduction to axiomatic quantum field theory. Reading: W. A. Benjamin, Advanced Book Program.Google Scholar
  7. Caianiello, S., & Bertolaso, M. (2016). Robustness as organized heterogeneity. Rivista di filosofia Neo-scolastica, 2, 293–303.Google Scholar
  8. Capolupo, A., Freeman, W. J., & Vitiello, G. (2013). Dissipation of ‘dark energy’ by cortex in knowledge retrieval. Physics of Life Reviews, 10, 85–94.CrossRefGoogle Scholar
  9. Capolupo, A., Del Giudice, E., Elia, V., Germano, R., Napoli, E., Niccoli, M., Tedeschi, A., & Vitiello, G. (2014). Self-similarity properties of nafionized and filtered water and deformed coherent states. International Journal of Modern Physics B, 28, 1450007 20 pages.CrossRefGoogle Scholar
  10. Celeghini, E., Rasetti, M., & Vitiello, G. (1992). Quantum dissipation. Annals of Physics, 215, 156–170.CrossRefGoogle Scholar
  11. Celeghini, E., De Martino, S., De Siena, S., Iorio, A., Rasetti, M., & Vitiello, G. (1998). Thermo field dynamics and quantum algebras. Physics Letters A, 244, 455–461.CrossRefGoogle Scholar
  12. Chen, Y. S., Choi, W., Papanikolaou, S., & Sethna, J. P. (2010). Bending crystals: Emergence of fractal dislocation structures. Physical Review Letters, 105, 105501.CrossRefGoogle Scholar
  13. De Lauro, E., De Martino, S., Falanga, M., & Ixaru, L. G. (2009). Limit cycles in nonlinear excitation of clusters of classical oscillators. Computer Phys. Comm., 180, 1832–1838.CrossRefGoogle Scholar
  14. Del Giudice, E., & Vitiello, G. (2006). The role of the electromagnetic field in the formation of domains in the process of symmetry breaking phase transitions. Physical Review A, 74, 022105.CrossRefGoogle Scholar
  15. Del Giudice, E., Doglia, S., Milani, M., & Vitiello, G. (1983). Spontaneous symmetry breakdown and boson condensation in biology. Physics Letters A, 95, 508–510.CrossRefGoogle Scholar
  16. Del Giudice, E., Doglia, S., Milani, M., & Vitiello, G. (1985). A quantum field theoretical approach to the collective behavior of biological systems. Nuclear Physics B, 251(FS 13), 375–400.CrossRefGoogle Scholar
  17. Del Giudice, E., Doglia, S., Milani, M., & Vitiello, G. (1986). Electromagnetic field and spontaneous symmetry breaking in biological matter. Nuclear Physics B, 275(FS 17), 185–199.CrossRefGoogle Scholar
  18. Del Giudice, E., Preparata, G., & Vitiello, G. (1988a). Water as a free electric dipole laser. Physical Review Letters, 61, 1085–1088.CrossRefGoogle Scholar
  19. Del Giudice, E., Manka, R., Milani, M., & Vitiello, G. (1988b). Non-constant order parameter and vacuum evolution. Physics Letters, 206B, 661–664.CrossRefGoogle Scholar
  20. Freeman, W.J. (1975/2004). Mass action in the nervous system. New York: Academic.Google Scholar
  21. Freeman, W. J. (1991). The physiology of perception. Scientific American, 264, 78–85.CrossRefGoogle Scholar
  22. Freeman, W.J. (2014). Review of the book by K. H. Pribram, The form within: My point of view. Westport: Prospecta Press. 2013.Google Scholar
  23. Freeman, W. J., & Quian Quiroga, R. (2013). Imaging brain function with EEG. New York: Springer.CrossRefGoogle Scholar
  24. Freeman, W. J., & Vitiello, G. (2006). Nonlinear brain dynamics as macroscopic manifestation of underlying many-body dynamics. Physics of Life Reviews, 3, 93–118.CrossRefGoogle Scholar
  25. Freeman, W. J., & Vitiello, G. (2016). Matter and mind are entangled in two streams of images guiding behavior and informing the subject through awareness. Mind & Matter, 14(1), 7–24.Google Scholar
  26. Freeman, W. J., Livi, R., Obinata, M., & Vitiello, G. (2012). Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-landau equation. International Journal of Modern Physics B, 26, 1250035.CrossRefGoogle Scholar
  27. Gramsci, A. (1932). Quaderni del carcere. Quad. N. 10, 1932–35, V. Gerratana (Ed.), Einaudi, Torino 1977, p. 1263 (The open Marxism of Antonio Gramsci. Translated and annotated by C. Marzani, Cameron Associates, New York 1957).Google Scholar
  28. Hilborn, R. (1994). Chaos and nonlinear dynamics. Oxford: Oxford University Press.Google Scholar
  29. Itzykson, C., & Zuber, J. (1980). Quantum field theory. New York: McGraw-Hill.Google Scholar
  30. Kozma, R., & Freeman, W. J. (2016). Cognitive phase transitions in the cerebral cortex – Enhancing the neuron doctrine by modeling neural fields. Cham: Springer.CrossRefGoogle Scholar
  31. Kurian, P., Capolupo, A., Craddock, T. J. A., & Vitiello, G. (2016). Water-mediated correlations in DNA-enzyme interactios. Physics Letters A, 382(1), 33–43 arXiv:1608.08097.CrossRefGoogle Scholar
  32. Loppini, A., Capolupo, A., Cherubini, C., Gizzi, A., Bertolaso, M., Filippi, S., & Vitiello, G. (2014). On the coherent behavior of pancreatic beta cell clusters. Physics Letters A, 378, 3210–3217.CrossRefGoogle Scholar
  33. Montagnier, L., Aissa, J., Del Giudice, E., Lavallee, C., Tedeschi, A., & Vitiello, G. (2011). DNA waves and water. Journal of Physics: Conference Series, 306, 012007.Google Scholar
  34. Montagnier, L., Del Giudice, E., Aïssa, J., Lavallee, C., Motschwiller, S., Capolupo, A., Polcari, A., Romano, P., Tedeschi, A., & Vitiello, G. (2015). Transduction of DNA information through water and electromagnetic waves. Electromagnetic Biology and Medicine, 34, 106–112.CrossRefGoogle Scholar
  35. Montagnier, L., Aïssa, J., Capolupo, A., Craddock, T. J. A., Kurian, P., Lavallee, C., Polcari, A., Romano, P., Tedeschi, A., & Vitiello, G. (2017). Water bridging dynamics of polymerase chain reaction in the gauge theory paradigm of quantum fields. Water, 9(5), 339 Addendum, Water, 9(6), 436.CrossRefGoogle Scholar
  36. Peitgen, H. O., Jürgens, H., & Saupe, D. (1986). Chaos and fractals. New frontiers of science. Berlin: Springer.Google Scholar
  37. Perelomov, A. (1986). Generalized coherent states and their applications. Berlin: Springer.CrossRefGoogle Scholar
  38. Pessa, E., & Vitiello, G. (2003). Quantum noise, entanglement and chaos in the quantum field theory of mind/brain states. Mind and Matter, 1, 59–79 arXiv:q-bio.OT/0309009.Google Scholar
  39. Pessa, E., & Vitiello, G. (2004). Quantum noise induced entanglement and chaos in the dissipative quantum model of brain. International Journal of Modern Physics B, 18, 841–858.CrossRefGoogle Scholar
  40. Piattelli-Palmarini, M., & Vitiello, G. (2015). Linguistics and some aspects of its underlying dynamics. Biolinguistics, 9, 96–115.Google Scholar
  41. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.CrossRefGoogle Scholar
  42. Schrödinger, E. (1944). What is life? Cambridge: Cambridge University Press (1967 reprint).Google Scholar
  43. Schweber, S. S. (1961). An introduction to relativistic quantum field theory. New York: Harper and Row.Google Scholar
  44. Umezawa, H. (1993). Advanced field theory: Micro, macro and thermal concepts. New York: AIP.Google Scholar
  45. Umezawa, H., Matsumoto, H., & Tachiki, M. (1982). Thermo field dynamics and condensed states. Amsterdam: North-Holland Pub. Co.Google Scholar
  46. Vitiello, G. (1995). Dissipation and memory capacity in the quantum brain model. International Journal of Modern Physics B, 9, 973–989.CrossRefGoogle Scholar
  47. Vitiello, G. (1998). Structure and function. An open letter to Patricia Churchland. In S. R. Hameroff, A. W. Kaszniak, & A. C. Scott (Eds.), Toward a science of consciousness II (pp. 231–236). Cambridge: MIT Press.Google Scholar
  48. Vitiello, G. (2001). My double unveiled. Amsterdam: John Benjamins Publ. Co.CrossRefGoogle Scholar
  49. Vitiello, G. (2004a). Classical chaotic trajectories in quantum field theory. International Journal of Modern Physics B, 18, 785–792.CrossRefGoogle Scholar
  50. Vitiello, G. (2004b). The dissipative brain. In G. Globus, K. H. Pribram, & G. Vitiello (Eds.), Brain and Being. At the boundary between science, philosophy, language and arts (pp. 315–334). Amsterdam: John Benjamins Publ..Google Scholar
  51. Vitiello, G. (2009). Coherent states, fractals and brain waves. New Mathematics and Natural Computation, 5, 245–264.CrossRefGoogle Scholar
  52. Vitiello, G. (2012). Fractals, coherent states and self-similarity induced noncommutative geometry. Physics Letters A, 376, 2527–2532.CrossRefGoogle Scholar
  53. Vitiello, G. (2014). On the isomorphism between dissipative systems, fractal self-similarity and electrodynamics. Toward an integrated vision of nature. Systems, 2, 203–216.CrossRefGoogle Scholar
  54. Vitiello, G. (2015). The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning. Current Opinion in Neurobiology, 31, 7–12.CrossRefGoogle Scholar
  55. Vitiello, G. (2016). (2016). Filling the gap between neuronal activity and macroscopic functional brain behavior. In R. Kozma & W. J. Freeman (Eds.), Cognitive phase transitions in the cerebral cortex – Enhancing the neuron doctrine by modeling neural fields (pp. 239–249). Cham: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics “E.R. Caianiello” and Istituto Nazionale di Fisica Nucleare (INFN)University of SalernoFisciano, SalernoItaly

Personalised recommendations