The Robustness of Musical Language: A Perspective from Complex Systems Theory

  • Flavio Keller
  • Nicola Di StefanoEmail author
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 23)


Within the field of systems theory, the term robustness has typically been applied to different contexts such as automatic control, genetic networks, metabolic pathways, morphogenesis, and ecosystems. All these systems involve either man-made machines, or living organisms. In this chapter, we will consider music as a peculiar complex system, involving both the realm of machines (the musical instrument) and the realm of biology (the player and the listeners). We will discuss some of the properties of music experience in terms of different attributes of robustness, focusing in particular on stability, the property enabling a complex system to maintain its function against a wide range of external and internal changes. We will provide examples of the human ability of isolating and maintaining stable information within the perceptual flow and despite changes in the external world that reach our perceptions, leading towards a characterization of robustness in music perception as referred both to the search for regularities and to the range of tolerance that perception admits to regularities. Finally, we will list four multiple interaction cycles that typically characterize music experience and that involve both internal properties of the organism and the environment.


Regulation Functional integration Cognition Music perception Auditory streaming Missing fundamental 


  1. Arons, B. (1992). A review of the cocktail party effect. Journal of the American Voice I/O Society, 12(7), 35–50.Google Scholar
  2. Bregman, A. S. (1990). Auditory scene analysis. Cambridge, MA: MIT Press.Google Scholar
  3. Brotons, M., & Koger, S. M. (2000). The impact of music therapy on language functioning in dementia. Journal of Music Therapy, 37, 183–195.CrossRefGoogle Scholar
  4. Cohen, A. J., Thorpe, L. A., & Trehub, S. E. (1987). Infants’ perception of musical relations in short transposed tone sequences. Canadian Journal of Psychology, 41, 33–47.CrossRefGoogle Scholar
  5. Cooke, D. (1959). The language of music. London: Oxford University Press.Google Scholar
  6. De Weerd, P. (2006). Perceptual filling-in: More than the eye can see. Progress in Brain Research, 154, 227–245.CrossRefGoogle Scholar
  7. Descartes, R. (1961). Compendium Musicae. Rome: American Institute of Musicology.Google Scholar
  8. Di Stefano, N., & Bertolaso, M. (2014). Understanding musical consonance and dissonance: Epistemological considerations from a systemic perspective. System, 2, 566–575.CrossRefGoogle Scholar
  9. Di Stefano, N., Focaroli, V., Giuliani, A., Formica, D., Taffoni, F., & Keller, F. (2017). A new research method to test auditory preferences in young listeners: Results from a consonance versus dissonance perception study. Psychology of Music, 45(5), 699–712.CrossRefGoogle Scholar
  10. Drake, C., & Bertrand, D. (2003). The quest for universals in temporal processing in music. In R. Zatorre (Ed.), The cognitive neurosciences of music. Oxford: Oxford University Press.Google Scholar
  11. Fernandez-Leon. (2014). Robustness as a relational phenomenon. Biological Reviews, 89, 552–567.CrossRefGoogle Scholar
  12. Gabrielsson. (2002). Emotion perceived and emotion felt: Same or different? Musicae Scientiae, 5(1), 123–147.Google Scholar
  13. Geretsegger, M., Elefant, C., Mössler, K. A., & Gold, C. (2014). Music therapy for people with autism spectrum disorder. The Cochrane Library, 6, CD004381.Google Scholar
  14. Handel, S. (1989). Listening: An introduction to the perception of auditory events. Cambridge, MA: MIT Press.Google Scholar
  15. Juslin, P. N. (2013). From every day emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10(3), 235–266.CrossRefGoogle Scholar
  16. Kavakami, et al. (2013). Sad music induces pleasant emotions. Frontiers in Psychology, 4, 311.Google Scholar
  17. Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826–837.CrossRefGoogle Scholar
  18. Komeilipoor, N., Rodger, M. W. M., Craig, C. M., & Cesari, P. (2015). (Dis-) Harmony in movement: Effects of musical dissonance on movement timing and form. Experimental Brain Research, 233, 1585–1595.CrossRefGoogle Scholar
  19. Kuyper, P. (1972). The cocktail party effect. Audiology, 11(5), 277–282.CrossRefGoogle Scholar
  20. Lagasse, A. B., & Thaut, M. H. (2013). The neurobiological foundation of neurologic music therapy. Music and Medicine, 5, 228–233.CrossRefGoogle Scholar
  21. Leman, M. (2007). Embodied music cognition and mediation technology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  22. Leman, M., Nijs, L., & Di Stefano, N. (2017). On the role of the hand in the expression of music. In M. Bertolaso & N. Di Stefano (Eds.), The hand perception, cognition, and action (pp. 175–192). Cham: Springer.Google Scholar
  23. Oldfield, A. (2006). Interactive music therapy – A positive approach. London: Jessica Kingsley Publishers.Google Scholar
  24. Pankovski, T., & Pankovska, E. (2017). Emergence of the consonance pattern within synaptic weights of a neural network featuring Hebbian neuroplasticity. Biologically Inspired Cognitive Architectures, 22, 82–94.CrossRefGoogle Scholar
  25. Schellenberg, E. G., & Trehub, S. E. (1994). Frequency ratios and the discrimination of pure tone sequences. Perception & Psychophysics, 56, 472–478.CrossRefGoogle Scholar
  26. Schellenberg, E. G., & Trehub, S. E. (1996a). Children’s discrimination of melodic intervals. Developmental Psychology, 32, 1039–1050.CrossRefGoogle Scholar
  27. Schellenberg, E. G., & Trehub, S. E. (1996b). Natural musical intervals: Evidence from infant listeners. Psychological Science, 7, 272–277.CrossRefGoogle Scholar
  28. Schouten, J. F. (1938). The perception of subjective tones (Vol. 41, pp. 1086–1093). Amsterdam: K Akademie van Wetenshappen.Google Scholar
  29. Stainsby, T., & Cross, I. (2016). The perception of pitch. In Hallam, Cross, & Taut (Eds.), The Oxford handbook of music psychology. Oxford: Oxford University Press.Google Scholar
  30. Trainor, L. J., & Trehub, S. E. (1993a). Musical context effects in infants and adults: Key distance. Journal of Experimental Psychology. Human Perception and Performance, 19, 615–626.CrossRefGoogle Scholar
  31. Trainor, L. J., & Trehub, S. E. (1993b). What mediates infants’ and adults’ superior processing of the major over the augmented triad? Music Perception, 11, 185–196.CrossRefGoogle Scholar
  32. Trehub, S. E., & Thorpe, L. A. (1989). Infants’ perception of rhythm. Categorization of auditory sequences by temporal structure. Canadian Journal of Psychology, 43, 217–229.CrossRefGoogle Scholar
  33. Trulla, L. L., Di Stefano, N., & Giuliani, A. (2018). Computational approach to musical consonance and dissonance. Frontiers in Psychology, 9, 381.CrossRefGoogle Scholar
  34. von Ehrenfels, C. (1988). On Gestalt qualities. In B. Smith (Ed.), Foundations of Gestalt Theory (pp. 82–117). Wien: Philosophia Verlag.Google Scholar
  35. Warren, R. M. (2008). Auditory perception. An analysis and synthesis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. Windsor, L. (2009). Measurement and models of performance. In Hallam, Cross, & Thaut (Eds.), Oxford handbook of music psychology. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Philosophy of Scientific and Technological Practice and Laboratory of Developmental NeuroscienceUniversità Campus Bio-Medico di RomaRomeItaly

Personalised recommendations