Framework for the Analysis of Smart Cities Models

  • Elsa Estrada
  • Rocio Maciel
  • Adriana Peña Pérez Negrón
  • Graciela Lara López
  • Víctor Larios
  • Alberto Ochoa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 865)


Smart cities evolution forces auto adjustments. A constant change that difficult methodologies and tools development aimed to measure and evaluate the huge number of variables involved. The Smart City metrics model is composed by its determined key performed indicators (KPI); with different aims a number of models have been proposed by different organizations, which difficult its comparison. In this paper, we propose a framework to apply Data Science to KPIs from Open Data. This framework is organized by a set of tools: a KPI tree structure; a JSON document; a web app with non-supervised or supervised knowledge for the models evaluation; and the infrastructure for reports reception and attention. In such a way that this framework creates an infrastructure that goes from the treatment of Open Data to models evaluation and its management.


Data Science JSON Open Data KPI Smart City 


  1. 1.
    Airaksinen, A., Pinto Seppä, I., Huovila, A., Neumann, H.-M., Iglar, B., Bosch, P.: Smart City performance measurement framework. Presented at the February 6 (2018)Google Scholar
  2. 2.
    Townsend, A.M.: Smart Cities (2013)Google Scholar
  3. 3.
    Ahlgren, B., Hidell, M., Ngai, E.C.H.: Internet of Things for smart cities: interoperability and open data. IEEE Internet Comput (6), 52–56 (2016)Google Scholar
  4. 4.
    Arcadis: Sustainable Cities index (2016).
  5. 5.
    Moonen, T., Clark, G.: The business of cities 2013. 1–224 (2013)Google Scholar
  6. 6.
  7. 7.
    Claude-Anne, W.: Sustainable development and resilience of communities—indicators for city services and quality of life. 1–92 (2013)Google Scholar
  8. 8.
    Institute for Urban Strategies the Mori Memorial Foundation: Global Power City 2017 (2017)Google Scholar
  9. 9.
    United Nations Development Programme: Human Development Report. 1–286 (2017).
  10. 10.
    Ishwarappa, Anuradha, J.: A brief introduction on Big Data 5 Vs characteristics and Hadoop technology. Procedia Comput. Sci. 48, 319–324 (2015)Google Scholar
  11. 11.
    tdwi ed: UPSIDE where DATA means BUSINESSGoogle Scholar
  12. 12.
    Edlich, S.: 2011 The NoSQL year.
  13. 13.
    Brewer, E.: CAP twelve years later: how the “rules” have changed. Computer 45(2), 23–29 (2012)CrossRefGoogle Scholar
  14. 14.
    Estrada, E., Ochoa, A., Bernabe-Loranca, B., Oliva, D., Larios, V., Maciel, R.: Smart City visualization tool for the Open Data georeferenced analysis utilizing machine learning. Int. J. Comb. Optim. Probl. Inform. 9(2), 25–40 (2018)Google Scholar
  15. 15.
    Estrada, E., Maciel, R., Ochoa, A.: Best practices to implement a NoSQL method for the Smart Cities metric analysisGoogle Scholar
  16. 16.
    Estrada, E., Maciel, R., Gomez, L.: NoSQL method for the metric analysis of Smart Cities (2015)Google Scholar
  17. 17.
    Estrada, E., Kalichaning-Balich, I., Martinez, P., Mora, O.B., Maciel, R.: A parallel support vector machine algorithm to identify patterns of pollution in Smart Cities for metropolitan zone of Guadalajara (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elsa Estrada
    • 1
  • Rocio Maciel
    • 2
  • Adriana Peña Pérez Negrón
    • 1
  • Graciela Lara López
    • 1
  • Víctor Larios
    • 2
  • Alberto Ochoa
    • 3
  1. 1.CUCEI of the Universidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEA of the Universidad de GuadalajaraZapopanMexico
  3. 3.Universidad Autónoma de Ciuadad JuárezCiudad JuárezMexico

Personalised recommendations