Advertisement

X-Ray Scattering by Antiphase Ferroelectric Domain Walls in the Antiferroelectric Phase of the PbZr\(_{0.985}\)Ti\(_{0.015}\)O\(_3\)

  • Sergej VakhrushevEmail author
  • Daria A. Andronikova
  • Dmitry Y. Chernyshov
  • Alexey V. Filimonov
  • Stanislav A. Udovenko
  • N. V. Ravi Kumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)

Abstract

The results of the X-ray diffuse scattering (DS) measurements of the Zr-rich PbZrO\(_{3}\) - PbTiO\(_{3}\) solid solution PbZr\(_{0.985}\)Ti\(_{0.015}\)O\(_3\) (PZT1.5) are presented. Measurements were performed in zero electric field and in applied electric field E = 5 kV / cm. In the antiferroelectric phase diffuse scattering streaks around \(\varSigma \) superstructure peaks \((h+\frac{1}{4}~k+\frac{1}{4}~l)\) were found and interpreted as a scattering on ferroelectric antiphase domain walls. This conclusion is corroborated by the observation of a strong influence of the electric field on these streaks. Reported results are important for the prospective application of the antiferroelectrics as the basis for the high-density non-volatile memory devices.

Keywords

Antiferroelectrics Domain walls Diffuse scattering 

Notes

Acknowledgement

We acknowledge N.G. Leontiev (AzovBlack Sea Engineering Institute, Don State Agrarian University) and I.N. Leontiev (Southern Federal University) for providing the single crystal of PZT. A.V. Filimonov and N.V. Ravi Kumar acknowledge the support of Russian Foundation for Basic Research (Grant No. 16-52-48016). S. Udovenko acknowledges the support of the Ministry of Science and Education of the Russian Federation, project no. 3.1150.2017/4.6. D. Andronikova acknowledges the support of Russian Foundation for Basic Research (Grant No. 16-29-14018) and the Russian President Scholarship No. SP-3762.2018.5

References

  1. 1.
    Roberts, S.: Dielectric properties of lead zirconate and barium-lead zirconate. J. Am. Ceram. Soc. 33(1946), 63–66 (1950)CrossRefGoogle Scholar
  2. 2.
    Shirane, G., Sawaguchi, E., Takagi, Y.: Dielectric properties of lead zirconate. Phys. Rev. 84(3), 476–481 (1951)CrossRefGoogle Scholar
  3. 3.
    Matthias, B.T., Wood, E.A.: Low temperature polymorphic transformation in WO\(_{3}\). Phys. Rev. 84(6), 1255–1255 (1951)CrossRefGoogle Scholar
  4. 4.
    Mason, W.P.: The elastic, piezoelectric, and dielectric constants of potassium dihydrogen phosphate and ammonium dihydrogen phosphate. Phys. Rev. 69(5–6), 173–194 (1946)CrossRefGoogle Scholar
  5. 5.
    Shirane, G., Hoshino, S.: Crystal structure of the ferroelectric phase in PbZrO\(_{3}\) containing Ba or Ti. Phys. Rev. 86(2), 248–249 (1952)CrossRefGoogle Scholar
  6. 6.
    Shirane, G., Suzuki, K., Takeda, A.: Phase transitions in solid solutions of PbZrO\(_{3}\) and PbTiO\(_{3}\) (II) X-ray study (1952)Google Scholar
  7. 7.
    Jaffe, B., Cook, W.J., Jaffe, J.: Piesoelectric Ceramics. Academic Press, London (1971)Google Scholar
  8. 8.
    Hao, X.: A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 03(01), 1330001 (2013)CrossRefGoogle Scholar
  9. 9.
    Mischenko, A.S., Zhang, Q., Scott, J.F., Whatmore, R.W., Mathur, N.D.: Giant electrocaloric effect in PZT. Science 104(1), 9–13 (2014)Google Scholar
  10. 10.
    Glazkova-Swedberg, E., Cuozzo, J., Lisenkov, S., Ponomareva, I.: Electrocaloric effect in PbZrO\(_{3}\) thin films with antiferroelectric-ferroelectric phase competition. Comput. Mater. Sci. 129, 44–48 (2017)CrossRefGoogle Scholar
  11. 11.
    Tagantsev, A.K., Cross, L.E., Fousek, J.: Domains in Ferroic Crystals and Thin Films. Springer, New York (2010).  https://doi.org/10.1007/978-1-4419-1417-0CrossRefGoogle Scholar
  12. 12.
    Jia, C.L., et al.: Direct observation of continous electric dipole rotation in flux-closure domains in FE PZT. 1420–1424 (2011). 2101Google Scholar
  13. 13.
    Wada, S., Kakemoto, H., Tsurumi, T.: Enhanced piezoelectric properties of piezoelectric single crystals by domain engineering. Mater. Trans. 45(2), 178–187 (2004)CrossRefGoogle Scholar
  14. 14.
    Rao, W.F., Wang, Y.U.: Domain wall broadening mechanism for domain size effect of enhanced piezoelectricity in crystallographically engineered ferroelectric single crystals. Appl. Phys. Lett. 90(4) (2007)CrossRefGoogle Scholar
  15. 15.
    Tagantsev, A.K., Courtens, E., Arzel, L.: Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys. Rev. B 64(22), 224107 (2001)CrossRefGoogle Scholar
  16. 16.
    Goncalves-Ferreira, L., Redfern, S.A.T., Artacho, E., Salje, E.K.H.: Ferrielectric twin walls in CaTiO3. Phys. Rev. Lett. 101(9), 1–4 (2008)CrossRefGoogle Scholar
  17. 17.
    Bousquet, E., et al.: Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452(7188), 732–736 (2008)CrossRefGoogle Scholar
  18. 18.
    Wei, X.-K., Tagantsev, A.K., Kvasov, A., Roleder, K., Jia, C., Setter, N.: Ferroelectric translational antiphase boundaries in nonpolar materials. Nature Communi. 5, 3031 (2014)CrossRefGoogle Scholar
  19. 19.
    Andreeva, N.V.V., et al.: Domain structures and correlated out-of-plane and in-plane polarization reorientations in Pb(Zr\(_{0.96}\)Ti\(_{0.04}\))O\(_{1}\) single crystal via piezoresponse force microscopy. AIP Adv. 6(9) (2016)Google Scholar
  20. 20.
    Bruce, A.D., Cowley, R.A.: Structural Phase Transitions. Taylor and Francis, London (1981)CrossRefGoogle Scholar
  21. 21.
    Leontiev, N.G., Smotrakov, V.G., Fesenko, O.E.: Phase diagram of PbZr\(_{1-x}\)Ti\(_{x}\)O\(_{3}\) at x \(<\) 0,1. Izv. Akad. Nauk SSSR, Neorg. Mater. 18(449) (1982)Google Scholar
  22. 22.
    COMSOL Multiphysics Reference Manual. COMSOL, Inc. www.comsol.com
  23. 23.
    Udovenko, S.A., Chernyshov, D.Y., Andronikova, D.A., Filimonov, A.V., Vakhrushev, S.B.: The technique of studying X-Ray scattering over wide temperature range in an electric field. Phys. Solid State 60(5) (2018)CrossRefGoogle Scholar
  24. 24.
    Dyadkin, V., Pattison, P., Dmitriev, V., Chernyshov, D.: A new multipurpose diffractometer PILATUS@SNBL. J. Synchrotron Radiat. 23(3), 825–829 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt.-PetersburgRussia
  3. 3.Swiss-Norwegian Beamlines at ESRFGrenoble CedexFrance
  4. 4.Indian Institute of Technology-Madras (IIT Madras)ChennaiIndia

Personalised recommendations