Advertisement

Dynamics of Polypeptide Cluster Dipole Moment for Nano Communication Applications

  • Elena VelichkoEmail author
  • Tatiana Zezina
  • Maxim Baranov
  • Elina Nepomnyashchaya
  • Oleg Tsybin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)

Abstract

Computer simulation of instantaneous time-dependent dipole moment and related nano-electromagnetic field of peptide network, or cluster, in vacuum and aquatic environment, reveal possibilities of molecular system control by means of external electric field. Protein water solution electrical conductivity measurements show some frequency resonances. Probably, revealed effects could be used in nano communication systems in RF-Microwave-THz frequency range.

Keywords

Biomolecular cluster Dipole moment Nano-electromagnetic field Computer simulations 

References

  1. 1.
    Velichko, E., Zezina, T., Cheremiskina, A., Tsybin, O.: Nano communication device with embedded molecular films: effect of electromagnetic field and dipole moment dynamics. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 765–771. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23126-6_71CrossRefGoogle Scholar
  2. 2.
    Tsybin, O.: Nano-device with an embedded molecular film: mechanisms of excitation. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 772–777. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23126-6_72CrossRefGoogle Scholar
  3. 3.
    Dyubo, D., Tsybin, O.Y.: Nano communication device with an embedded molecular film: electromagnetic signals integration with dynamic operation photodetector. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 206–213. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67380-6_19CrossRefGoogle Scholar
  4. 4.
    Vasanthi, H., Krishnaswamy, S.: Dipole moment in TIM alpha/beta fold proteins. Indian J. Biochem. Biophys. 40(3), 194–202 (2003)Google Scholar
  5. 5.
    Miller, C.A., Hernández-Ortiz, J.P., Abbott, N.L., Gellman, S.H., Pablo, J.J.: Dipole-induced self-assembly of helical β-peptides. J. Chem. Phys. 129, 015102 (2008)CrossRefGoogle Scholar
  6. 6.
    Kelly, C.M., Northey, T., Ryan, K.: Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field. Biophys. Chem. 196, 16–24 (2015)CrossRefGoogle Scholar
  7. 7.
    Ripoll, D.R., Vila, J.A., Scheraga, H.A.: On the orientation of the backbone dipoles in native folds. Proc. Natl. Acad. Sci. U.S.A. 102, 7559–7564 (2005)CrossRefGoogle Scholar
  8. 8.
    Zezina, T.I., Tsybin, O.Y.: Subpicosecond dynamics of the molecular polyalanine dipole moment. Phys. Mathe. (2017). St. Petersburg Polytechnical UniversityGoogle Scholar
  9. 9.
    Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 4, 17 (2012).  https://doi.org/10.1186/1758-2946-4-17CrossRefGoogle Scholar
  10. 10.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. Model. 14(1), 33–38 (1996).  https://doi.org/10.1016/0263-7855(96)00018-5CrossRefGoogle Scholar
  11. 11.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983).  https://doi.org/10.1063/1.445869CrossRefGoogle Scholar
  12. 12.
    Mackerell, A.D., Feig, M., Brooks, C.L.: Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004).  https://doi.org/10.1002/jcc.20065CrossRefGoogle Scholar
  13. 13.
    Phillips, J.C., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).  https://doi.org/10.1002/jcc.20289CrossRefGoogle Scholar
  14. 14.
    Velichko, E., Baranov, M., Nepomnyashchaya, E., Cheremiskina, A., Aksenov, E.: Studies of biomolecular nanomaterials for application in electronics and communications. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 786–792. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23126-6_74CrossRefGoogle Scholar
  15. 15.
    Chen, Q., Liu, X., Chen, J., Zeng, J., Cheng, Z., Liu, Z.: A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging. Adv. Mater. 27(43), 6820–6827 (2015)CrossRefGoogle Scholar
  16. 16.
    Chen, B., He, X.Y., Yi, X.Q., Zhuo, R.X., Cheng, S.X.: Dual-peptide-functionalized albumin-based nanoparticles with pH-dependent self-assembly behavior for drug delivery. ACS Appl. Mater. Interfaces. 7(28), 15148–15153 (2015)CrossRefGoogle Scholar
  17. 17.
    Choi, S.H., et al.: Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J. Controlled Release 197, 199–207 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations