Advertisement

Synthesis of the Demodulation Algorithm for the Phase Modulated Signals in Presence of the Background Noise Using Complete Sufficient Statistics

  • Sergey I. Ivanov
  • Leonid B. Liokumovich
  • A. V. MedvedevEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)

Abstract

A description is given of the algorithm for demodulating a linearly frequency-modulated signal against a background of white Gaussian noise with a constant component. The functions of complete sufficient statistics for estimating the phase and amplitude parameters of the signal, as well as the level of the constant component and the noise variance are found. The demodulation algorithm is implemented in the LabVIEW program environment. Computer modeling showed the asymptotic efficiency of the received estimates of the signal parameters.

Keywords

Estimation of parameters Sufficient statistics Phase modulated signal Demodulation A priori non-certainty Gaussian noise 

Notes

Acknowledgment

The work was done under financial support of Ministry of Education and Science of the Russian Federation in terms of FTP “Research and development on priority trends of Russian scientific-technological complex evolvement in 2014–2020 years” (agreement# 14.578.21.0211, agreement unique identifier RFMEFI57816X0211).

References

  1. 1.
    Djurovic, I., Simeunovic, M., Djukanovic, S., et al.: A hybrid CPF-HAF estimation of polynomial-phase signals: detailed statistical analysis. IEEE Trans. Signal Process. 60, 5010–5023 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barbarossa, S., Scaglione, A., Giannakis, G.B.: Product high-order ambiguity function for multicomponent polynomial-phase signal modeling. IEEE Trans. Signal Process. 46, 691–708 (1998)CrossRefGoogle Scholar
  3. 3.
    McKilliam, R.G., Quinn, B.G., Clarkson, I.V.L., et al.: Polynomial phase estimation by least squares phase unwrapping. IEEE Trans. Signal Process. 62, 1962–1975 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ghogho, M., Nandi, A.K., Swami, A.: Cramér-Rao bound and maximum likelihood estimation for random amplitude phase modulated signals. IEEE Trans. Signal Process. 47, 2905–2916 (1999)CrossRefGoogle Scholar
  5. 5.
    Wang, P., Djurovíc, I., Yang, J.Y.: Generalized high-order phase function for parameter estimation of polynomial phase signal. IEEE Trans. Signal Process. 56, 3023–3028 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Theys, C., Ferrari, A., Vieira, M.: Marginal Bayesian analysis of polynomial-phase signals. Signal Process. 81, 69–82 (2001)CrossRefGoogle Scholar
  7. 7.
    Djurovíc, I., Stankovíc, L.: Quasi-maximum-likelihood estimator of polynomial phase signals. IET Signal Process. 8(4), 347–359 (2014)CrossRefGoogle Scholar
  8. 8.
    Deng, Z., et al.: Compound time-frequency domain method for estimating parameters of uniform-sampling polynomial-phase signals on the entire identifiable region. IET Signal Proc. 10(7), 743–751 (2016)CrossRefGoogle Scholar
  9. 9.
    Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, New Jersey, 595 p. (1993)Google Scholar
  10. 10.
    Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New York (1998). Chapter 4zbMATHGoogle Scholar
  11. 11.
    Van Trees, H.L.: Optimum Array Processing. Part IV, 1443p. Wiley, Hoboken (2002)Google Scholar
  12. 12.
    Brynolfsson, S.J., Jakobsson, A., Hansson-Sandsten, M.: Sparse semi-parametric estimation of harmonic chirp signals. IEEE Trans. Signal Process. 64(7), 1798–1807 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vostretsov, A.G.: Efficient signal parameter estimation under the conditions of the a priori uncertainty using complete sufficient statistics. J. Communi. Technol. Electron. 44(5), 512–517 (1999)Google Scholar
  14. 14.
    Ivanov, S.I., Kyrnyshev, A.M., Lavrov, A.P.: Measuring radar cross-section of complex-shaped objects using the Doppler shift. In: International Siberian Conference on Control and Communications, SIBCON 2015-Proceedings, pp. 1–4.  https://doi.org/10.1109/SIBCON.2015.7147075
  15. 15.
    Ivanov, S.I., Liokumovich, L.B., Medvedev, A.V.: Estimation of the parameters of the phase modulated signal in presence of the background noise using complete sufficient statistics. In: 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), pp. 11–13 (2017).  https://doi.org/10.1109/scm.2017.7970480
  16. 16.
    Molodjakov, S.A., Ivanov, S.I., Lavrov, A.P.: Optoelectronic pulsars’ processor and its real-time software. In: 2017 IEEE II International Conference on Control in Technical Systems (CTS), pp. pp. 59–62 (2017).  https://doi.org/10.1109/ctsys.2017.8109488
  17. 17.
    Kudryashov, A.V., Liokumovich, L.B., Medvedev, A.V.: Digital demodulation methods for fiber interferometers. Opt. Mem. Neural Netw. (Inf. Opt.) 22(4), 236–243 (2013)CrossRefGoogle Scholar
  18. 18.
    Lehmann E.L., Scheffe H.: Completeness, similar regions, and unbiased estimation-Part I, Part II. In: Rojo J. (ed.) Selected Works of E. L. Lehmann. Selected Works in Probability and Statistics. Springer, Boston (2012).  https://doi.org/10.1007/978-1-4614-1412-4_23Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt-PetersburgRussia

Personalised recommendations