Advertisement

Nanocommunication System with a Laser Activated Molecular Film

  • Elena VelichkoEmail author
  • Ekaterina Savchenko
  • Elina Nepomnyashchaya
  • Dmitrii Dyubo
  • Oleg Tsybin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)

Abstract

Molecular communication systems became a promising paradigm of modern nanonetworks. Quantum carrier transfer creates communication channels between parts of a molecule and/or connects a few domains inside a molecular metamaterial network. This manuscript presents our studies of such channels activated by means of modulated laser beam irradiation resulting in molecular fluorescence, probably at a shifted frequency. The acquisition system for the electromagnetic field generated by a molecule based on the novel dynamic pin-photo diode is characterized by a high sensitivity and a low noise level due to the signal amplitude-time function integration.

Keywords

Molecular communication Dynamic pin-photodiode Registration of fluorescence Nanonetworks Nanocommunication Nano electromagnetic field 

Notes

Acknowledgements

The authors are grateful to ActLight SA (Lausanne, Switzerland, [18]) for their donation of a pin photodiode for the research.

References

  1. 1.
    Akan, O.B., Ramezani, H., Khan, T., Abbasi, N.A., Kuscu, M.: Fundamentals of molecular information and communication science. J. Proc. IEEE 105(2), 306–318 (2017)CrossRefGoogle Scholar
  2. 2.
    Bush, S.F.: Nanoscale Communication Networks. Artech House, Norwood (2010)Google Scholar
  3. 3.
    Walsh, F., Balasubramaniam, S., Botvich, D., Donnelly, W.: Synthetic protocols for nano sensor transmitting platforms using enzyme and DNA based computing. Nano Commun. Netw. 1(1), 50–62 (2010)CrossRefGoogle Scholar
  4. 4.
    Kuscu, M., Akan, O.B.: On the physical design of molecular communication receiver based on nanoscale biosensors. IEEE Sens. J. 16(8), 2228–2243 (2016)CrossRefGoogle Scholar
  5. 5.
    Kuscu, M., Akan, O.B.: The Internet of molecular things based on FRET. IEEE Internet Things J. 3(1), 4–17 (2016)CrossRefGoogle Scholar
  6. 6.
    Offenhäusser, A., Rinaldi, R.: Nanobioelectronics – for Electronics, Biology and Medicine. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-09459-5CrossRefGoogle Scholar
  7. 7.
    Akuildiz, I.F., Jornet, J.M.: Electromagnetic wireless nanosensor networks. J. Nanocommun. Netw. 1, 3–19 (2010)Google Scholar
  8. 8.
    Heath, J.R., Ratner, M.A.: Molecular electronics. J. Phys. Today 56(5), 43–49 (2003)CrossRefGoogle Scholar
  9. 9.
    Tsybin, O.: Nano-device with an embedded molecular film: mechanisms of excitation. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 772–777. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23126-6_72CrossRefGoogle Scholar
  10. 10.
    Giné, P.L., Akyildiz, I.F.: Molecular communication options for long range nanonetworks. J. Comput. Netw. 53, 2753–2766 (2009)CrossRefGoogle Scholar
  11. 11.
    Okhonin, S., et al.: A dynamic operation of a PIN photodiode. J. Appl. Phys. Lett. 106, 031115 (2015)CrossRefGoogle Scholar
  12. 12.
    Sallin, D.: A low-voltage CMOS-compatible time-domain photodetector, device & front end electronics. Ph.D. thesis 6869, EPFL, Lausanne, Switzerland (2005)Google Scholar
  13. 13.
    Thoma, R., Hampp, N., Bräuchle, C., Oesterhelt, D.: Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering. Opt. Lett. 16, 651–653 (1991)CrossRefGoogle Scholar
  14. 14.
    Tsybin, O.Y., Mishin, M.: Ion desorption from skin-current induced metal surface. ZTF Lett. 22(4), 21–24 (1996). (In Russian)Google Scholar
  15. 15.
    Zamiatin, A.V., Tsybin, O.Y.: Surface skin-current activated emission of electrons and ions. In: 20th International Workshop on Beam Dynamics and Optimization, BDO 2014, 6890100 (2014)Google Scholar
  16. 16.
    Merlo, J.M., et al.: Wireless communication system via nanoscale plasmonic antennas. Sci. Rep. 6, 31710 (2016)CrossRefGoogle Scholar
  17. 17.
    Le Ru, E.C., Etchegoin, P.: Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic, 1st edn. Elsevier, Amsterdam (2009)Google Scholar
  18. 18.
    ActLight: The future of light based electronics. http://act-light.com/technology. Accessed 19 May 2018

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Peter the Great Saint Petersburg Polytechnic UniversitySaint PetersburgRussia

Personalised recommendations