Some Directions of Quantum Frequency Standard Modernization for Telecommunication Systems

  • Alexander A. PetrovEmail author
  • Vadim V. Davydov
  • Nadya M. Grebenikova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)


Quantum frequency standard is one of the essential elements of many telecommunication and satellite systems. In present work several directions of modernization of the quantum frequency standard on the atoms of cesium-133 are considered. Implementation a method of direct digital synthesis is allow to improve output signal characteristics of frequency synthesizer. Also it is allow developing a magnetic field stabilization system. Experimental research of the cesium atomic clock’s metrological characteristics showed improvement Allan variance on 10%.


Quantum frequency standard Cesium atomic clock Frequency synthesizer Direct digital synthesis Magnetic field stabilization system Allan variance 


  1. 1.
    Riechle, F.: Frequency Standards: Basics and Applications. Wiley-VCH, Weinheim (2004). 526 p.Google Scholar
  2. 2.
    Glazov, A.I., et al.: International comparisons of standards in the area of fiber-optic communication and information transmission systems. Meas. Tech. 60(10), 1064–1070 (2018)CrossRefGoogle Scholar
  3. 3.
    Kolmogorov, O.V., et al.: System for transmitting reference frequency and time signals to measurement resources of the Glonass ground complex by optical cable. Meas. Tech. 60(9), 901–905 (2017)CrossRefGoogle Scholar
  4. 4.
    Balaev, R.I., Malimon, A.N., Fedorova, D.M., Kurchanov, A.F., Troyan, V.I.: Estimation of the precision of transmission of the standard signals of a hydrogen oscillator analog a fiber-optic communication line with electronic compensation of disturbances. Meas. Tech. 60(8), 806–812 (2017)CrossRefGoogle Scholar
  5. 5.
    Semenov, V.V., Nikiforov, N.F., Ermak, S.V., Davydov, V.V.: Calculation of stationary magnetic resonance signal in optically oriented atoms induced by a sequence of radio pulses. Sov. J. Commun. Technol. Electron. 36(4), 59–63 (1991)Google Scholar
  6. 6.
    Petrov, A.A., Davydov, V.V., Myazin, N.S., Kaganovskiy, V.E.: Rubidium atomic clock with improved metrological characteristics for satellite communication system. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC - 2017. LNCS, vol. 10531, pp. 561–568. Springer, Cham (2017). Scholar
  7. 7.
    Nazarov, L.E., Golovkin, I.V.: Symbol reception of signals corresponding to high-speed super-accurate codes and turbo codes based on them. J. Commun. Technol. Electron. 52(10), 1125–1129 (2007)CrossRefGoogle Scholar
  8. 8.
    Petrov, A.A., Davydov, V.V.: Improvement frequency stability of caesium atomic clock for satellite communication system. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 739–744. Springer, Cham (2015). Scholar
  9. 9.
    Pakhomov, A.A.: Fast digital image processing of artificial Earth satellites. J. Commun. Technol. Electron. 52(10), 1114–1118 (2007)CrossRefGoogle Scholar
  10. 10.
    Petrov, A.A., Vologdin, V.A., Davydov, V.V., Zalyotov, D.V.: Dependence of microwave – excitation signal parameters on frequency stability caesium atomic clock. J. Phys. Conf. Ser. 643(1), 012087 (2015)Google Scholar
  11. 11.
    Petrov, A.A., Davydov, V.V.: Digital frequency synthesizer for 133Cs-Vapor atomic clock. J. Commun. Technol. Electron. 62(3), 289–293 (2017)CrossRefGoogle Scholar
  12. 12.
    Efimov, A.I., Lukanina, L.A., Samoznaev, L.N., Chashei, I.V., Bird, M.K.: Intensity of fluctuations in the frequency of radio signals of spacecraft in the near-solar plasma. J. Commun. Technol. Electron. 55(11), 1253–1262 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alexander A. Petrov
    • 1
    • 2
    Email author
  • Vadim V. Davydov
    • 1
    • 3
    • 4
  • Nadya M. Grebenikova
    • 1
  1. 1.Peter the Great Saint-Petersburg Polytechnical UniversitySt. PetersburgRussia
  2. 2.Russian Institute of Radionavigation and TimeSt. PetersburgRussia
  3. 3.The Bonch-Bruevich Saint - Petersburg State University of TelecommunicationsSt. PetersburgRussia
  4. 4.Department of EcologyAll-Russian Research Institute of PhytopathologyOdintsovo DistrictRussia

Personalised recommendations