Advertisement

The Casimir-Operated Microdevice for Application in Optical Networks

  • Galina L. Klimchitskaya
  • Vladimir M. Mostepanenko
  • Viktor M. Petrov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)

Abstract

The microdevice capable of producing light pulses from a continuous incident laser light do not using the mechanical wheels with a highly stable speed of rotation is suggested. This device, which is functioning like an optical chopper, is operated by a balance between the Casimir force and light pressure force acting in the Fabry-Pérot microresonator formed by the two atomically thin Ag mirrors deposited on the parallel sides of a Si microstructure. The separation distance between the mirrors only slightly exceeds the half wavelength of the laser light. It is shown that this condition leads to a cyclic process resulting in the pulses of transmitted light. The feasibility of the proposed device is confirmed with detailed computations of both the Casimir and light pressure forces taking into account the realistic properties of both the microstructure and mirror materials.

Keywords

Casimir force Light pressure Microdevices 

Notes

Acknowledgments

The authors are grateful to Prof. Dr. T. Tschudi for useful discussions.

References

  1. 1.
    Parsegian, V.A.: Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  2. 2.
    Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir Effect. Oxford University Press, Oxford (2015)zbMATHGoogle Scholar
  3. 3.
    Decca, R.S., López, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 75, 077101-1–4 (2007)CrossRefGoogle Scholar
  4. 4.
    Chang, C.-C., Banishev, A.A., Castillo-Garza, R., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Gradient of the Casimir force between Au surfaces of a sphere and a plate measured using an atomic force microscope in a frequency-shift technique. Phys. Rev. B 85, 165443-1-1–17 (2012)Google Scholar
  5. 5.
    Banishev, A.A., Chang, C.-C., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Measurement of the gradient of the Casimir force between a nonmagnetic gold sphere and a magnetic nickel plate. Phys. Rev. B 85, 195422-1–7 (2012)Google Scholar
  6. 6.
    Banishev, A.A., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Demonstration of the Casimir force between ferromagnetic surfaces of a Ni-coated sphere and a Ni-coated plate. Phys. Rev. Lett. 110, 137401-1–5 (2013)Google Scholar
  7. 7.
    Banishev, A.A., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Casimir interaction between two magnetic metals in comparison with nonmagnetic test bodies. Phys. Rev. B 88, 155410-1–20 (2013)Google Scholar
  8. 8.
    Bimonte, G., López, D., Decca, R.S.: Isoelectronic determination of the thermal Casimir force. Phys. Rev. B 93, 184434-1–15 (2016)Google Scholar
  9. 9.
    Chen, F., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Control of the Casimir force by the modification of dielectric properties with light. Phys. Rev. B 76, 035338-1–15 (2007)Google Scholar
  10. 10.
    Torricelli, G., et al.: Switching Casimir force with phase-change materials. Phys. Rev. A 82, 010101(R)-1–4 (2010)Google Scholar
  11. 11.
    de Man, S., Heeck, K., Wijngaarden, R.J., Iannuzzi, D.: Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402-1–4 (2009)Google Scholar
  12. 12.
    Chang, C.-C., Banishev, A.A., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Reduction of the Casimir force from indium tin oxide film by UV treatment. Phys. Rev. Lett. 107, 090403-1–4 (2011)Google Scholar
  13. 13.
    Banishev, A.A., Chang, C.-C., Castillo-Garza, R., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Modifying the Casimir force between indium tin oxide plate and Au sphere. Phys. Rev. B 85, 045436-1–18 (2012)Google Scholar
  14. 14.
    Sedighi, M., Svetovoy, V.B., Palasantzas, G.: Casimir force measurements from carbide surfaces. Phys. Rev. B 93, 085434-1–6 (2016)Google Scholar
  15. 15.
    Chan, H.B., et al.: Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101, 030401-1–4 (2008)Google Scholar
  16. 16.
    Bao, Y., et al.: Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects. Phys. Rev. Lett. 105, 250402-1–4 (2010)Google Scholar
  17. 17.
    Chiu, H.-C., Klimchitskaya, G.L., Marachevsky, V.N., Mostepanenko, V.M., Mohideen, U.: Demonstration of the asymmetric lateral Casimir force between corrugated surfaces in nonadditive regime. Phys. Rev. B 80, 121402(R)-1–4 (2009)Google Scholar
  18. 18.
    Chiu, H.-C., Klimchitskaya, G.L., Marachevsky, V.N., Mostepanenko, V.N., Mohideen, U.: Lateral Casimir force between sinusoidally corrugated surfaces: Asymmetric profiles, deviations from the proximity force approximation, and comparison with exact theory. Phys. Rev. B 81, 115417-1–20 (2010)Google Scholar
  19. 19.
    Intravaia, F., et al.: Strong Casimir force reduction through metallic surface nanostructuring. Nat. Commun. 4, 2515-1–8 (2013)Google Scholar
  20. 20.
    Chan, H.B., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J., Capasso, F.: Quantum mechanical actuation of microelectromechanical system by the Casimir effect. Science 291, 1941–1944 (2001)CrossRefGoogle Scholar
  21. 21.
    Chan, H.B., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J., Capasso, F.: Nonlinear micromechanical Casimir oscillator. Phys. Rev. Lett. 87, 211801-1–4 (2001)Google Scholar
  22. 22.
    Barcenas, J., Reyes, L., Esquivel-Sirvent, R.: Scaling of micro- and nanodevices actuated by the Casimir force. Appl. Phys. Lett. 87, 263106-1–3 (2005)Google Scholar
  23. 23.
    Esquivel-Sirvent, R., Pérez-Pascual, R.: Geometry and charge carrier induced stability in Casimir actuated nanodevices. Eur. Phys. J. B 86, 467-1–6 (2013)Google Scholar
  24. 24.
    Broer, W., Waalkens, H., Svetovoy, V.B., Knoester, J., Palasantzas, J.: Nonlinear actuation dynamics of driven Casimir oscillators with rough surfaces. Phys. Rev. Appl. 4, 054016-1–7 (2015)Google Scholar
  25. 25.
    Sedighi, M., Broer, W., Palasantzas, G., Kooi, B.J.: Sensitivity of micromechanical actuation on amorphous to crystalline phase transformations under the influence of Casimir forces. Phys. Rev. B 88, 165423-1–5 (2013)Google Scholar
  26. 26.
    Zou, J., et al.: Casimir forces on a silicon micromechanical chip. Nat. Commun. 4, 1845-1–6 (2013)Google Scholar
  27. 27.
    Tang, L., et al.: Measurement of non-monotonic Casimir forces between silicon nanostructures. Nat. Photonics 11, 97–101 (2017)CrossRefGoogle Scholar
  28. 28.
    Boström, M., Persson, C., Sernelius, B.E.: Casimir force between atomically thin gold films. Eur. Phys. J. B 86, 43-1–4 (2013)Google Scholar
  29. 29.
    Ghosh, D.S.: Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry. Springer, Cham (2013)CrossRefGoogle Scholar
  30. 30.
    Petrov, V.M., Petrov, M.P., Bryksin, V.V., Petter, J., Tschudi, T.: Optical detection of the Casimir force between macroscopic objects. Opt. Lett. 32, 3167–3169 (2006)CrossRefGoogle Scholar
  31. 31.
    Petrov, V.M., Petrov, M.P., Bryksin, V.V., Petter, J., Tschudi, T.: Casimir force measurement using dynamic holography. JETP 104, 696–703 (2007). [Zh. Eksp. Teor. Fiz. 131, 798–807 (2007)]CrossRefGoogle Scholar
  32. 32.
    Petrov, V., Hahn, J., Petter, J., Petrov, M., Tschudi, T.: Precise subnanometer control of the position of a macro object by light pressure. Opt. Lett. 30, 3138–3140 (2005)CrossRefGoogle Scholar
  33. 33.
    Tomaš, M.S.: Casimir force in absorbing multilayers. Phys. Rev. A 66, 052103-1–7 (2002)Google Scholar
  34. 34.
    Klimchitskaya, G.L., Mostepanenko, V.M.: Casimir and van der Waals energy of anisotropic atomically thin metallic films. Phys. Rev. B 92, 205410-1–7 (2015)Google Scholar
  35. 35.
    Mostepanenko, V.M.: Special features of the thermal Casimir effect across a uniaxial anisotropic film. Phys. Rev. A 92, 012511-1–8 (2015)Google Scholar
  36. 36.
    Bergström, L.: Hamaker constants of inorganic materials Adv. Colloid Interface Sci. 70, 125–169 (1997)CrossRefGoogle Scholar
  37. 37.
    Palik, E.D. (ed.): Handbook of Optical Constants of Solids. Academic, New York (1985)Google Scholar
  38. 38.
    Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media. Pergamon, Oxford (1984)Google Scholar
  39. 39.
    Nash, D.J., Sambles, J.R.: Surface plasmon study of the optical dielectric function of silver. J. Mod. Opt. 43, 81–91 (1996)Google Scholar
  40. 40.
    Kudykina, T.A.: Boundary conditions in case of electromagnetic wave absorption. Phys. Stat. Sol. (b) 160, 365–373 (1990)CrossRefGoogle Scholar
  41. 41.
    Kudykina, T.A.: Dispersion and propagation of light in crystals in the exciton absorption region. Phys. Stat. Sol. (b) 165, 591–598 (1991)CrossRefGoogle Scholar
  42. 42.
    Kovalenko, S.A.: Optical properties of thin metal films. Semicond. Phys. Quantum Electr. Optoelectr. 2, 13–20 (1999)Google Scholar
  43. 43.
    Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Central Astronomical Observatory at Pulkovo of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Physics, Nanotechnology and TelecommunicationsPeter the Great Saint Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.Institute of Advanced Manufacturing TechnologiesPeter the Great Saint Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations